IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021056.html
   My bibliography  Save this article

Privacy-preserving distributed secondary voltage control with predefined-time convergence for microgrids

Author

Listed:
  • Li, Hao
  • Yang, Ting
  • Wang, Hengyu
  • Chen, Yanhong

Abstract

Distributed secondary control is widely used in the hierarchical control structure of islanded microgrids. However, the information exchanged between distributed generators (DGs) may be intercepted by eavesdroppers, leading to the risk of privacy leakage and even data poisoning attacks that affect the stability of microgrids. Existing privacy-preserving distributed secondary control strategies suffer from low accuracy, high communication and computational overhead, and the poor convergence properties. Moreover, the objectives of multi-bus voltage regulation and proportional reactive power sharing cannot be achieved. To overcome these shortcomings, a privacy-preserving distributed average estimator is innovatively designed, where the states containing privacy information are decomposed into two parts based on the state decomposition method. The average estimation relies on the partial information exchange between neighboring DGs, thus avoiding the leakage of sensitive information. Furthermore, to address the difficulty that the state difference generated by the state decomposition leads to a long convergence time, a time-based generator is designed to effectively resolve the conflict between the privacy-preserving level and the convergence time. On this basis, a privacy-preserving distributed secondary voltage control is proposed, which preserves the privacy of the microgrid states while achieving average voltage regulation and proportional reactive power sharing within a predefined time, maintaining the system voltage stability and preventing the DGs from being heavily or lightly loaded. Finally, a hardware-in-the-loop platform for an islanded microgrid is built and the convergence and privacy-preserving performance of the proposed control strategy is verified.

Suggested Citation

  • Li, Hao & Yang, Ting & Wang, Hengyu & Chen, Yanhong, 2025. "Privacy-preserving distributed secondary voltage control with predefined-time convergence for microgrids," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021056
    DOI: 10.1016/j.apenergy.2024.124722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamad, Basil R. & Al-Durra, Ahmed & Al-Jaafari, Khaled Ali & Zeineldin, Hatem & Mohamed, Yasser Abdel-Rady I. & El-Saadany, Ehab, 2024. "Improving the robustness of distributed secondary control in autonomous microgrids to mitigate the effects of communication delays," Applied Energy, Elsevier, vol. 364(C).
    2. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    3. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sati, Shraf Eldin & Al-Durra, Ahmed & Zeineldin, Hatem H. & EL-Fouly, Tarek H.M. & El-Saadany, Ehab F., 2025. "Decentralized frequency restoration and stability enhancement for virtual synchronous machines at economic dispatch in islanded microgrid," Applied Energy, Elsevier, vol. 377(PB).
    2. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    3. Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    4. Su, Jinshuo & Zhang, Hongcai & Liu, Hui & Liu, Dundun, 2025. "Lyapunov-based distributed secondary frequency and voltage control for distributed energy resources in islanded microgrids with expected dynamic performance improvement," Applied Energy, Elsevier, vol. 377(PC).
    5. Masrur, Hasan & Khaloie, Hooman & Al-Awami, Ali T. & Ferik, Sami El & Senjyu, Tomonobu, 2024. "Cost-aware modeling and operation of interconnected multi-energy microgrids considering environmental and resilience impact," Applied Energy, Elsevier, vol. 356(C).
    6. Hu, Yong & Bu, Siqi & Luo, Jianqiang & Wen, Jiaxin, 2023. "Generalization of oscillation loop and energy flow analysis for investigating various oscillations of renewable energy systems," Renewable Energy, Elsevier, vol. 218(C).
    7. Wang, Pengda & Xiao, Jinxin & Huang, Sheng & Wu, Qiuwei & Zhang, Menglin & Wu, Xuan & Shen, Feifan & Ma, Kuichao, 2025. "An accelerated asynchronous distributed control for DFIG wind turbines and collection system loss minimization in waked wind farm," Applied Energy, Elsevier, vol. 377(PD).
    8. Wang, Jingjing & Yao, Liangzhong & Liang, Jun & Wang, Jun & Cheng, Fan, 2025. "Distributed optimization strategy for networked microgrids based on network partitioning," Applied Energy, Elsevier, vol. 378(PB).
    9. Hamad, Basil R. & Al-Durra, Ahmed & Al-Jaafari, Khaled Ali & Zeineldin, Hatem & Mohamed, Yasser Abdel-Rady I. & El-Saadany, Ehab, 2024. "Improving the robustness of distributed secondary control in autonomous microgrids to mitigate the effects of communication delays," Applied Energy, Elsevier, vol. 364(C).
    10. Khosravi, Nima & Dowlatabadi, Masrour & Sabzevari, Kiomars, 2025. "A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems," Applied Energy, Elsevier, vol. 377(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.