IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006652.html
   My bibliography  Save this article

Optimal and distributed energy management in interconnected energy hubs

Author

Listed:
  • Azimi, Maryam
  • Salami, Abolfazl
  • Javadi, Mohammad S.
  • Catalão, João P.S.

Abstract

Recently, multi-carrier energy systems (MCESs) have been rapidly developed as flexible multi-generation systems aiming to satisfy load demands by purchasing, converting, and storing different energy carriers. This study specifically focuses on the optimal and robust large-scale coordination of interconnected energy hubs (IEHs) in an iterative consensus-based procedure considering distribution network losses. Furthermore, a new robust-based hybrid IGDT/consensus algorithm is introduced to achieve risk-averse optimal energy management in IEHs under uncertainty. The fast convergence, needless to collect the total information from all hubs, minimal computational burden, and more robust communication system are the most important features of the proposed distributed consensus algorithm in this study. The effectiveness of the proposed consensus algorithm is verified by simulation results considering various energy trading structures in IEHs at different scales. The obtained results highlight the scalability capability of the proposed method. Regarding an IEHS of 30 energy hubs, the computation burden is lightened by 0.53 (s) and 0.1917 (s), respectively with and without uncertainty. Considering distribution network losses, the total purchasing costs can be increased by 8%. The simulation results also reveal an increase of 11% in the total power trading under the uncertainty.

Suggested Citation

  • Azimi, Maryam & Salami, Abolfazl & Javadi, Mohammad S. & Catalão, João P.S., 2024. "Optimal and distributed energy management in interconnected energy hubs," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652
    DOI: 10.1016/j.apenergy.2024.123282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.