IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006470.html
   My bibliography  Save this article

Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle

Author

Listed:
  • Liu, Huimin
  • Lin, Cheng
  • Yu, Xiao
  • Tao, Zhenyi
  • Xu, Jiaqi

Abstract

Driving condition is the core factor influencing vehicle energy management and power output strategies, hence realistic and accurate driving pattern recognition is crucial for realizing intelligent control of Electric Vehicles in complex scenarios. However, driving patterns mismatch with real scenarios caused by lack of road environment information and the reduced global recognition accuracy triggered by the fixed recognition horizon together constrain the development of intelligent control strategies. In this study, a framework for variable horizon multivariate driving pattern recognition strategy based on vehicle-road two-dimensional (2D) information is proposed. Specifically, multivariate driving pattern extraction is carried out based on real vehicle-road 2D data, and the extraction data serves as input for training offline driving pattern recognizer. To meet the challenge of large differences and frequent changes in driving conditions during the online application, a variable horizon recognition strategy is proposed based on the optimal horizon matching regularity. Finally, test results show that the proposed approach achieves an average recognition accuracy of 88.42% under different cycles, including 88.39% for complex driving cycles. Furthermore, the recognition accuracy is improved by 63.14% and 47.51% compared with the fixed long/short horizon. The framework can provide a basis for intelligent control strategies, thus broadening the Electric Vehicle application scenarios.

Suggested Citation

  • Liu, Huimin & Lin, Cheng & Yu, Xiao & Tao, Zhenyi & Xu, Jiaqi, 2024. "Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006470
    DOI: 10.1016/j.apenergy.2024.123264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.