IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924005981.html
   My bibliography  Save this article

Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering

Author

Listed:
  • Despotovic, Milan
  • Voyant, Cyril
  • Garcia-Gutierrez, Luis
  • Almorox, Javier
  • Notton, Gilles

Abstract

Solar resource forecasting is essential for an optimal energy management in smart grids using photovoltaic (PV) production. For many sites and for short time horizons (nowcasting), approaches based on the use of time series and statistical or Artificial Intelligence methods are often preferred. These methods require a long historical time series of solar radiation not always available. A practical question often arises: what happens if we want to install a PV plant in an area not covered by a consistent historical data set? Is it possible then to “delocalize” the learning using data of another location? The objective is to compare the performances of two forecasting methods (Auto-Regressive and Extreme Learning) using alternatively for the learning process solar data measured on-site, data measured on stations with similar characteristics (from the same cluster) and data collected on any other stations. 70 Spanish meteorological stations are used (with a maximal distance between stations of 2000 km and with an altitude varying between 18 and 950 m). Using transfer Learning when no solar data are available conduces to obtain results in the same range of performances than using Direct Learning. This work shows that transfer learning (based on extreme learning forecasting) is fully acceptable (about 1 percentage point higher for classical error metric nRMSE) whatever the stations used for learning, and this deviation is reduced to 0.5 percentage point when using a station related to the same cluster. Thus, the clustering seems to be not efficient to improve the reliability of the solar irradiance forecasting.

Suggested Citation

  • Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005981
    DOI: 10.1016/j.apenergy.2024.123215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    2. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    3. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    5. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    8. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    9. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    10. Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    12. Niu, Tong & Li, Jinkai & Wei, Wei & Yue, Hui, 2022. "A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting," Applied Energy, Elsevier, vol. 326(C).
    13. Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
    14. Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
    15. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    16. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    17. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    18. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    19. Mielniczuk, J. & Wojdyllo, P., 2007. "Estimation of Hurst exponent revisited," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4510-4525, May.
    20. Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    2. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    3. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    4. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    5. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
    6. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    7. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    8. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    9. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    10. Hongbo Zhu & Bing Zhang & Weidong Song & Jiguang Dai & Xinmei Lan & Xinyue Chang, 2023. "Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    11. Rai, Amit & Shrivastava, Ashish & Jana, Kartick C., 2023. "Differential attention net: Multi-directed differential attention based hybrid deep learning model for solar power forecasting," Energy, Elsevier, vol. 263(PC).
    12. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    14. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    15. Muhannad Alaraj & Ibrahim Alsaidan & Astitva Kumar & Mohammad Rizwan & Majid Jamil, 2023. "Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    16. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    17. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
    19. Hui Huang & Qiliang Zhu & Xueling Zhu & Jinhua Zhang, 2023. "An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    20. Sylvain Cros & Jordi Badosa & André Szantaï & Martial Haeffelin, 2020. "Reliability Predictors for Solar Irradiance Satellite-Based Forecast," Energies, MDPI, vol. 13(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.