IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261924000175.html
   My bibliography  Save this article

The techno-economics of transmitting heat at high temperatures in insulated pipes over large distances

Author

Listed:
  • Lee, Leok
  • Ingenhoven, Philip
  • Saw, Woei L.
  • Nathan, Graham J ‘Gus’

Abstract

This study reports a systematic techno-economic assessment of the cost-optimal transmission for air as the heat transfer fluid at temperatures of up to 1200 °C, at scales of 1 to 1000 MW and at distances of up to 10 km. It employs a steady state heat transfer analysis, with energy balances, to assess the effect of scale, temperature and insulation on the heat losses and efficiency of the thermal transmission system, following by a techno-economic assessment. The sensitivity of the Levelised Cost of Heat, LCOHtr, to variations in thermal scale, operating temperature, distance, refractory and insulation thickness, ratio of the thickness of refractory and insulation, cost of any supplementary heat and lifetime is reported. The results show that LCOHtr decreases with an increase in thermal scale, as expected. The role of insulation is much more complex, since increasing the thickness of thermal barrier increases both cost and efficiency of the transmission, requiring an economic optimum to be determined for each of the various conditions assessed. Parameters are also coupled because a higher cost of supplied energy/ heat justifies the use of more insulation material. For a large GW scale thermal system, we estimate that it is possible to achieve a minimum overall LCOHtr,min of 0.16–0.36 USD/GJ/km of the length of the thermal transmission system, excluding additional location-specific costs such as land-access and local construction costs. These estimated costs are sufficiently attractive to justify ongoing development of systems to transport renewable heat to industry from sources such as concentrated solar thermal energy.

Suggested Citation

  • Lee, Leok & Ingenhoven, Philip & Saw, Woei L. & Nathan, Graham J ‘Gus’, 2024. "The techno-economics of transmitting heat at high temperatures in insulated pipes over large distances," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000175
    DOI: 10.1016/j.apenergy.2024.122634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Ka Lok & Chinnici, Alfonso & Jafarian, Mehdi & Arjomandi, Maziar & Dally, Bassam & Nathan, Graham, 2019. "The influence of wind speed, aperture ratio and tilt angle on the heat losses from a finely controlled heated cavity for a solar receiver," Renewable Energy, Elsevier, vol. 143(C), pages 1544-1553.
    2. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    3. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    4. repec:cdl:itsdav:qt1804p4vw is not listed on IDEAS
    5. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    6. repec:cdl:itsdav:qt7p3500g2 is not listed on IDEAS
    7. Sokolov, Dmitry V. & Barakhtenko, Evgeny A., 2020. "Optimization of transmission capacity of energy water pipeline networks with a tree-shaped configuration and multiple sources," Energy, Elsevier, vol. 210(C).
    8. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    9. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
    10. Ingenhoven, Philip & Lee, Leok & Saw, Woei & Rafique, Muhammad Mujahid & Potter, Daniel & Nathan, Graham J., 2023. "Techno-economic assessment from a transient simulation of a concentrated solar thermal plant to deliver high-temperature industrial process heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijuan Zhang & Wenlong Wang & Fengtian Yue & Jingsheng Wei & Tao Gao & Yangjie Wang & Yang Zhou, 2025. "Research on Cold-Energy Loss of Long-Distance Sleeve-Type Insulated Pipe for High-Temperature Deep Mines," Energies, MDPI, vol. 18(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    2. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    4. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    5. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    6. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    7. Guo, Siyi & Wei, Ziqing & Yin, Yaling & Zhai, Xiaoqiang, 2025. "A physics-guided RNN-KAN for multi-step prediction of heat pump operation states," Energy, Elsevier, vol. 320(C).
    8. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    9. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    10. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    11. Li, Gang & Du, Yuqing, 2018. "Performance investigation and economic benefits of new control strategies for heat pump-gas fired water heater hybrid system," Applied Energy, Elsevier, vol. 232(C), pages 101-118.
    12. Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.
    13. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    14. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    15. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    16. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    17. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    18. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
    19. Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    20. Simon Moser & Stefan Puschnigg, 2021. "Supra-Regional District Heating Networks: A Missing Infrastructure for a Sustainable Energy System," Energies, MDPI, vol. 14(12), pages 1-15, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.