IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019207.html
   My bibliography  Save this article

Reliability-aware multi-objective approach for predictive asset management: A Danish distribution grid case study

Author

Listed:
  • Mirshekali, Hamid
  • Mortensen, Lasse Kappel
  • Shaker, Hamid Reza

Abstract

The transition towards sustainable practices and a reliable electricity grid accommodates the rising electrification of the heating and transportation sectors. Aging, environmental factors, and operational conditions of electrical grid infrastructure contribute to a higher likelihood of faults. This leads to a reduced level of reliability, emphasizing the importance of renewing electrical grid infrastructure, particularly underground cables. Optimally replacing cables is essential, taking into account various factors like reducing the fault probability, minimizing the cost of power outages, and enhancing reliability within the budgetary constraint. This paper introduces an innovative methodology to predictive asset management for replacing underground cables using multi-objective optimization approach. Three objective functions are formulated: number of replaced cables, cost of power outages, and interruption-related index, which is determined through metrics like SAIFI, SAIDI, and ASIDI. These objectives are modeled as mixed-integer programming creating a multi-objective optimization problem, which is addressed using the epsilon-constraint approach. The optimization model identifies the cables that should be replaced within the budget constraint, aiming to optimize the objectives. The effectiveness of this approach is assessed using a real Danish distribution grid. The findings indicate that, compared to methods based on the cable age, fault vulnerability, and risk assessment, the proposed method demonstrates superior performance in terms of reliability metrics and power outage cost.

Suggested Citation

  • Mirshekali, Hamid & Mortensen, Lasse Kappel & Shaker, Hamid Reza, 2024. "Reliability-aware multi-objective approach for predictive asset management: A Danish distribution grid case study," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019207
    DOI: 10.1016/j.apenergy.2023.122556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alex Valenzuela & Esteban Inga & Silvio Simani, 2019. "Planning of a Resilient Underground Distribution Network Using Georeferenced Data," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    3. Lin, Boqiang & Huang, Chenchen, 2023. "Promoting variable renewable energy integration: The moderating effect of digitalization," Applied Energy, Elsevier, vol. 337(C).
    4. LaCommare, Kristina Hamachi & Eto, Joseph H., 2006. "Cost of power interruptions to electricity consumers in the United States (US)," Energy, Elsevier, vol. 31(12), pages 1845-1855.
    5. Mortensen, Lasse Kappel & Shaker, Hamid Reza & Veje, Christian T., 2022. "Relative fault vulnerability prediction for energy distribution networks," Applied Energy, Elsevier, vol. 322(C).
    6. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    7. Tanachai Somsak & Thanapong Suwanasri & Cattareeya Suwanasri, 2022. "Remaining Useful Life Estimation for Underground Cable Systems Based on Historical Health Index," Energies, MDPI, vol. 15(24), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odin Foldvik Eikeland & Filippo Maria Bianchi & Inga Setså Holmstrand & Sigurd Bakkejord & Sergio Santos & Matteo Chiesa, 2022. "Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case," Energies, MDPI, vol. 15(1), pages 1-21, January.
    2. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    4. Kun Wang & Bing Chen & Yuhong Li, 2024. "Technological, process or managerial innovation? How does digital transformation affect green innovation in industrial enterprises?," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-32, February.
    5. Andréia S. Santos & Lucas Teles Faria & Mara Lúcia M. Lopes & Carlos R. Minussi, 2023. "Power Distribution Systems’ Vulnerability by Regions Caused by Electrical Discharges," Energies, MDPI, vol. 16(23), pages 1-19, November.
    6. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.
    7. Majid Hashemi & Glenn Jenkins, 2021. "The Economic Benefits of Mitigating the Risk of Unplanned Power Outages," Working Paper 1468, Economics Department, Queen's University.
    8. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    9. Wang, Dandan & Li, Yusheng & Yang, Yongge & Hayase, Shuzi & Wu, Haifeng & Wang, Ruixiang & Ding, Chao & Shen, Qing, 2023. "How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation," Applied Energy, Elsevier, vol. 341(C).
    10. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    11. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    12. Huang, Chenchen & Lin, Boqiang, 2023. "Promoting decarbonization in the power sector: How important is digital transformation?," Energy Policy, Elsevier, vol. 182(C).
    13. Xavier Labandeira & Baltazar Manzano, 2012. "Some Economic Aspects of Energy Security," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 47-64.
    14. Paul Maliszewski & Elisabeth Larson & Charles Perrings, 2013. "Valuing the Reliability of the Electrical Power Infrastructure: A Two-stage Hedonic Approach," Urban Studies, Urban Studies Journal Limited, vol. 50(1), pages 72-87, January.
    15. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    16. Alex Valenzuela & Silvio Simani & Esteban Inga, 2021. "Automatic Overcurrent Protection Coordination after Distribution Network Reconfiguration Based on Peer-To-Peer Communication," Energies, MDPI, vol. 14(11), pages 1-22, June.
    17. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    18. Tarek M. Kamel & Amany Khalil & Mohammed M. Lakousha & Randa Khalil & Mohamed Hamdy, 2024. "Optimizing the View Percentage, Daylight Autonomy, Sunlight Exposure, and Energy Use: Data-Driven-Based Approach for Maximum Space Utilization in Residential Building Stock in Hot Climates," Energies, MDPI, vol. 17(3), pages 1-27, January.
    19. Pan, Xianyou & Shen, Zhiyang & Song, Malin & Shu, Yalin, 2023. "Enhancing green technology innovation through enterprise environmental governance: A life cycle perspective with moderator analysis of dynamic innovation capability," Energy Policy, Elsevier, vol. 182(C).
    20. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.