IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017397.html
   My bibliography  Save this article

Self-tuning triboelectric nanogenerator for omnidirectional broadband (1.2–13.8 m/s) wind energy collection and wind vector detection with deep learning

Author

Listed:
  • Zhang, Xuemei
  • Yang, Qianxi
  • Yang, Huake
  • Ren, Dahu
  • Li, Qianying
  • Li, Xiaochuan
  • Liu, Hanyuan
  • Yang, Hongmei
  • Xi, Yi

Abstract

Wind speed and wind direction are not only important meteorological factors in environmental dynamic monitoring but also crucial parameters for harvesting considerable renewable wind energy. Although the multi-uniform unit arrangement of triboelectric nanogenerator (TENG) is a strategy for extending the responsive wind speed and direction, interunit crosstalk, low wind direction resolution, narrow working wind speed range, and unclear complex interaction between wake and wind capture component hinder further applications of wind-driven TENG. Here, a self-tuning triboelectric nanogenerator (S-TENG) is developed to effectively harvest broadband omnidirectional wind energy and simultaneously meet the high-resolution detection of wind vector. The gas-solid interaction model of this device is proposed as a two-step process. Meanwhile, owning to the self-tuning ability, the device greatly expands its working range from 2.4 to 6.4 m/s to 1.2–13.8 m/s, giving an excellent output power of 47.43 W/m3. Additionally, a real-time wind vector sensing system based on LabVIEW software exhibits wind direction resolution of up to 5° with only three channels. The recognition accuracy of wind direction relying on deep learning model reaches 98.98%. This work provides a guidance for designing effective high entropy wind energy harvesters and a deep understanding of gas-solid interaction processes.

Suggested Citation

  • Zhang, Xuemei & Yang, Qianxi & Yang, Huake & Ren, Dahu & Li, Qianying & Li, Xiaochuan & Liu, Hanyuan & Yang, Hongmei & Xi, Yi, 2024. "Self-tuning triboelectric nanogenerator for omnidirectional broadband (1.2–13.8 m/s) wind energy collection and wind vector detection with deep learning," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017397
    DOI: 10.1016/j.apenergy.2023.122375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    2. Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
    3. Jihyun Bae & Jeongsu Lee & SeongMin Kim & Jaewook Ha & Byoung-Sun Lee & YoungJun Park & Chweelin Choong & Jin-Baek Kim & Zhong Lin Wang & Ho-Young Kim & Jong-Jin Park & U-In Chung, 2014. "Flutter-driven triboelectrification for harvesting wind energy," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    3. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    4. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    5. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    6. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    7. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    8. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    9. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    10. Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
    11. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    12. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    13. Nik Fakhri Nek Daud & Ruzlaini Ghoni, 2020. "Vibration Energy Harvesting Technique: A Comprehensive Review," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 4(2), pages 46-48:4, October.
    14. Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
    15. Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
    16. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    17. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    18. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    19. Xinyu An & Baowei Song & Wenlong Tian & Congcong Ma, 2018. "Design and CFD Simulations of a Vortex-Induced Piezoelectric Energy Converter (VIPEC) for Underwater Environment," Energies, MDPI, vol. 11(2), pages 1-15, February.
    20. Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.