IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics030626192301259x.html
   My bibliography  Save this article

High vacuum flat plate photovoltaic-thermal (HV PV-T) collectors: Efficiency analysis

Author

Listed:
  • De Luca, Daniela
  • Strazzullo, Paolo
  • Di Gennaro, Emiliano
  • Caldarelli, Antonio
  • Gaudino, Eliana
  • Musto, Marilena
  • Russo, Roberto

Abstract

Through a numerical model developed in MATLAB, we investigate the performance of a novel hybrid flat plate photovoltaic-thermal collector under high-vacuum (HV PV-T) to optimize the solar-to-thermal energy conversion and efficiently meet the thermal loads of industrial processes up to 150 °C along with additional production of electrical energy. In the proposed design, the photovoltaic (PV) cell is positioned directly above the Selective Solar Absorber (SSA) in a multi-layered PV-SSA structure.

Suggested Citation

  • De Luca, Daniela & Strazzullo, Paolo & Di Gennaro, Emiliano & Caldarelli, Antonio & Gaudino, Eliana & Musto, Marilena & Russo, Roberto, 2023. "High vacuum flat plate photovoltaic-thermal (HV PV-T) collectors: Efficiency analysis," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s030626192301259x
    DOI: 10.1016/j.apenergy.2023.121895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301259X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    2. Davide De Maio & Carmine D’Alessandro & Antonio Caldarelli & Daniela De Luca & Emiliano Di Gennaro & Roberto Russo & Marilena Musto, 2021. "A Selective Solar Absorber for Unconcentrated Solar Thermal Panels," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    4. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    5. D’Alessandro, Carmine & De Maio, Davide & Musto, Marilena & De Luca, Daniela & Di Gennaro, Emiliano & Bermel, Peter & Russo, Roberto, 2021. "Performance analysis of evacuated solar thermal panels with an infrared mirror," Applied Energy, Elsevier, vol. 288(C).
    6. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    7. Farshchimonfared, M. & Bilbao, J.I. & Sproul, A.B., 2015. "Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings," Renewable Energy, Elsevier, vol. 76(C), pages 27-35.
    8. Gao, Datong & Gao, Guangtao & Cao, Jingyu & Zhong, Shuai & Ren, Xiao & Dabwan, Yousef N. & Hu, Maobin & Jiao, Dongsheng & Kwan, Trevor Hocksun & Pei, Gang, 2020. "Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature," Applied Energy, Elsevier, vol. 269(C).
    9. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    3. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    4. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    5. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    6. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    7. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    8. Eliana Gaudino & Antonio Caldarelli & Roberto Russo & Marilena Musto, 2023. "Formulation of an Efficiency Model Valid for High Vacuum Flat Plate Collectors," Energies, MDPI, vol. 16(22), pages 1-12, November.
    9. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    10. Kim, Namsu & Kim, Dajung & Kang, Hanjun & Park, Yong-Gi, 2016. "Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet," Energy, Elsevier, vol. 113(C), pages 515-520.
    11. Guo, Jinyi & Bilbao, Jose I. & Sproul, Alistair B., 2020. "A novel solar cooling cycle – A ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures," Renewable Energy, Elsevier, vol. 162(C), pages 1273-1284.
    12. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    13. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    14. Annamaria Buonomano & Francesco Calise & Maria Vicidomini, 2016. "Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors," Energies, MDPI, vol. 9(7), pages 1-17, June.
    15. Daghigh, Roonak & Oramipoor, Hooman & Shahidian, Roonak, 2020. "Improving the performance and economic analysis of photovoltaic panel using copper tubular-rectangular ducted heat exchanger," Renewable Energy, Elsevier, vol. 156(C), pages 1076-1088.
    16. Ding Ding & Wenjing He & Chunlu Liu, 2021. "Mathematical Modeling and Optimization of Vanadium-Titanium Black Ceramic Solar Collectors," Energies, MDPI, vol. 14(3), pages 1-20, January.
    17. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.
    18. Evangelos I. Sakellariou & Petros J. Axaopoulos & Ioannis E. Sarris & Nodirbek Abdullaev, 2021. "Improving the Electrical Efficiency of the PV Panel via Geothermal Heat Exchanger: Mathematical Model, Validation and Parametric Analysis," Energies, MDPI, vol. 14(19), pages 1-22, October.
    19. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    20. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s030626192301259x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.