IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923002970.html
   My bibliography  Save this article

Robust co-planning of AC/DC transmission network and energy storage considering uncertainty of renewable energy

Author

Listed:
  • Wu, Yunyun
  • Fang, Jiakun
  • Ai, Xiaomeng
  • Xue, Xizhen
  • Cui, Shichang
  • Chen, Xia
  • Wen, Jinyu

Abstract

This paper proposes a robust co-planning model of hybrid AC/DC transmission network and energy storage with the penetration of renewable energy to promote the accommodation of renewable energy and to avoid investment redundancy. The energy storage configured in the power grid can improve the power flow distribution and alleviate transmission congestion, postponing the investment of new devices. A deterministic co-planning model is firstly developed considering voltage fluctuation, reactive power flow and the flexibility of voltage source converter based high voltage direct current (VSC-HVDC). To address the solving complexity caused by the non-convexity of the model, second-order cone programming (SOCP) is applied to transform the proposed model into a convex problem. To cope with the uncertainty of renewable energy, the robust co-planning formulation is established, where the data-adaptive uncertainty set with the extreme scenario method is introduced to describe renewable generation uncertainty. The column-and-constraint generation (C&CG) algorithm is adopted to decompose the robust co-planning problem into a master problem and several slave problems, which reduces the calculation scale and accelerates the solving process. Two case studies on a modified Garver’s 6-bus system and a practical Jiangxi province power system in China are carried out to verify the effectiveness and superiority of the proposed robust co-planning model.

Suggested Citation

  • Wu, Yunyun & Fang, Jiakun & Ai, Xiaomeng & Xue, Xizhen & Cui, Shichang & Chen, Xia & Wen, Jinyu, 2023. "Robust co-planning of AC/DC transmission network and energy storage considering uncertainty of renewable energy," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002970
    DOI: 10.1016/j.apenergy.2023.120933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    2. Liang, Z. & Chen, H. & Chen, S. & Lin, Z. & Kang, C., 2019. "Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China," Applied Energy, Elsevier, vol. 255(C).
    3. He, Hongjie & Du, Ershun & Zhang, Ning & Kang, Chongqing & Wang, Xuebin, 2021. "Enhancing the power grid flexibility with battery energy storage transportation and transmission switching," Applied Energy, Elsevier, vol. 290(C).
    4. Shan, Rui & Abdulla, Ahmed & Li, Mingquan, 2021. "Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs," Applied Energy, Elsevier, vol. 292(C).
    5. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    6. Yan, Chao & Geng, Xinbo & Bie, Zhaohong & Xie, Le, 2022. "Two-stage robust energy storage planning with probabilistic guarantees: A data-driven approach," Applied Energy, Elsevier, vol. 313(C).
    7. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    8. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    9. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    10. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    2. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    3. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    4. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    5. Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
    6. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    9. Khalid A. Alnowibet & Ahmad M. Alshamrani & Adel F. Alrasheedi, 2023. "A Bilevel Stochastic Optimization Framework for Market-Oriented Transmission Expansion Planning Considering Market Power," Energies, MDPI, vol. 16(7), pages 1-15, April.
    10. David Firnando Silalahi & Andrew Blakers & Cheng Cheng, 2023. "100% Renewable Electricity in Indonesia," Energies, MDPI, vol. 17(1), pages 1-22, December.
    11. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    13. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    14. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.
    15. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    17. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    18. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    19. Wang He & Min Liu & Chaowen Zuo & Kai Wang, 2023. "Massive Multi-Source Joint Outbound and Benefit Distribution Model Based on Cooperative Game," Energies, MDPI, vol. 16(18), pages 1-19, September.
    20. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.