IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015124.html
   My bibliography  Save this article

Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction

Author

Listed:
  • Anvari, Simin
  • Szlęk, Andrzej
  • Arteconi, Alessia
  • Desideri, Umberto
  • Rosen, Marc A.

Abstract

Biomass fuel energy can be utilized in cogeneration cycles through the gasification process. This reduces pollution and increases the efficiency of conventional cycles, and makes use of renewable energy instead of fossil fuels. In this paper, in order to generate both electricity and cooling, a cogeneration system has been proposed using biomass fuels. Then, various ways of injecting steam into each proposed cycle are proposed in order to improve its efficiency and performance. The following cycles are suggested and modeled: CHP with the steam injection into the combustion chamber, CHP with the steam injection into gasifier, and CHP with the steam injection into the gasifier and combustion chamber simultaneously. All proposed cycles are initially analyzed from energy, exergy, exergoeconomic, and environmental perspectives. Following analyses of the cycles, results are compared and discussed to select the cycle with the best balance in terms of thermodynamics, economics and pollutant emissions. Then, a parametric study is discussed in which, along with determining the influence of changing an important thermodynamic parameter on cycle performance, the simultaneous influence of two parameters is calculated and verified. The results show that the steam-injected gasifier cycle is about 5.43% more efficient than the steam-injected combustion chamber cycle, and its carbon dioxide emissions are about 5.2% lower. Also, the cycle by simultaneous injection of steam into both the gasifier and combustion chamber offers the highest efficiency and pollution reduction. Additionally, by simultaneously increasing the mass flow rates of steam injection into the proposed system with simultaneous steam injection into both the gasifier and combustion chamber, the exergy efficiency and costs are increased by 11.2% and 3.5% respectively, and CO2 emission are reduced by 12.5%.

Suggested Citation

  • Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015124
    DOI: 10.1016/j.apenergy.2022.120255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    2. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    3. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Gavifekr, Masood Kordoghli & Morosuk, Tatiana, 2016. "Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel," Renewable Energy, Elsevier, vol. 96(PA), pages 715-726.
    4. Pio, D.T. & Gomes, H.G.M.F. & Tarelho, L.A.C. & Vilas-Boas, A.C.M. & Matos, M.A.A. & Lemos, F.M.S., 2022. "Superheated steam injection as primary measure to improve producer gas quality from biomass air gasification in an autothermal pilot-scale gasifier," Renewable Energy, Elsevier, vol. 181(C), pages 1223-1236.
    5. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    6. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Seyed Mahmoudi, Seyed Mohammad & Morosuk, Tatiana, 2016. "Gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel: A thermodynamic assessment," Renewable Energy, Elsevier, vol. 92(C), pages 95-103.
    7. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    8. Anvari, Simin & Desideri, Umberto & Taghavifar, Hadi, 2020. "Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy," Applied Energy, Elsevier, vol. 258(C).
    9. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    2. Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.
    3. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    4. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis," Energy, Elsevier, vol. 207(C).
    5. Kayadelen, Hasan Kayhan, 2018. "A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives," Energy, Elsevier, vol. 143(C), pages 241-256.
    6. Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).
    7. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    8. Dmytro Levchenko & Andrii Manzharov & Artem Artyukhov & Nadiya Artyukhova & Jan Krmela, 2021. "Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation," Energies, MDPI, vol. 14(2), pages 1-16, January.
    9. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    10. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    11. Al-attab, K.A. & Zainal, Z.A., 2018. "Micro gas turbine running on naturally aspirated syngas: An experimental investigation," Renewable Energy, Elsevier, vol. 119(C), pages 210-216.
    12. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    13. Kayadelen, Hasan Kayhan & Ust, Yasin, 2017. "Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles," Energy, Elsevier, vol. 121(C), pages 751-771.
    14. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    15. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    16. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    17. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    18. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    19. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    20. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.