IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v320y2022ics0306261922006870.html
   My bibliography  Save this article

Thermal behavior prediction and adaptation analysis of a reelwell drilling method for closed-loop geothermal system

Author

Listed:
  • Yang, Hongwei
  • Li, Jun
  • Zhang, Hui
  • Jiang, Jiwei
  • Guo, Boyun
  • Gao, Reyu
  • Zhang, Geng

Abstract

The ultra-high temperature characteristic of the deep closed-loop geothermal system poses a great challenge for drilling. This paper proposes a reelwell drilling method for temperature-controlled drilling in ultra-high temperature geothermal reservoirs. Combining the flow characteristics and heat transfer mechanisms in each flow channel under three circulating modes of reelwell drilling, a set of integrated transient heat transfer models is developed for distinct thermal-associated regions. The model simultaneously couples the effect of the variable temperature-mass flow resulting from the fluid transition in different flow channels. The finite difference method is used to solve the model, and the field measurement data is employed to validate the model. The heat transfer rate and wellbore temperature distribution in reelwell drilling are investigated, and the optimum circulating mode suitable for temperature-controlled drilling is optimized. The results indicate that the cumulative bottomhole heat flux is always negative in reelwell drilling, revealing that the bottomhole temperature decreases gradually. Additionally, the absolute values of the cumulative heat flux under different circulating modes are consistent with circulating mode B > conventional drilling > circulating mode C > circulating mode A. Thus, the circulating mode B can effectively reduce the bottomhole temperature during drilling directional well. Moreover, when a suitable dual-channel valve position is selected in the middle and lower part of the wellbore and the auxiliary fluid inlet temperature is controlled to be less than 20 °C, the circulating mode B has the best temperature-controlled effect. Therefore, the circulating mode B of reelwell drilling method can provide a new option for temperature-controlled drilling for the deep closed-loop geothermal system.

Suggested Citation

  • Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Gao, Reyu & Zhang, Geng, 2022. "Thermal behavior prediction and adaptation analysis of a reelwell drilling method for closed-loop geothermal system," Applied Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006870
    DOI: 10.1016/j.apenergy.2022.119339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    2. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    3. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    4. Yang, Mou & Luo, Dayu & Chen, Yuanhang & Li, Gao & Tang, Daqian & Meng, Yingfeng, 2019. "Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling," Applied Energy, Elsevier, vol. 238(C), pages 1471-1483.
    5. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    6. Hu, Zixu & Xu, Tianfu & Feng, Bo & Yuan, Yilong & Li, Fengyu & Feng, Guanhong & Jiang, Zhenjiao, 2020. "Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid," Renewable Energy, Elsevier, vol. 154(C), pages 351-367.
    7. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Liangjie & Wei, Changjiang & Jia, Hai & Lu, Kechong, 2023. "Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Zhang, Geng, 2022. "Numerical analysis of heat transfer rate and wellbore temperature distribution under different circulating modes of Reel-well drilling," Energy, Elsevier, vol. 254(PB).
    2. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    3. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    4. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    5. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2023. "Stochastic performance assessment on long-term behavior of multilateral closed deep geothermal systems," Renewable Energy, Elsevier, vol. 208(C), pages 26-35.
    6. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    7. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    8. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    9. Wei, Changjiang & Mao, Liangjie & Yao, Changshun & Yu, Guijian, 2022. "Heat transfer investigation between wellbore and formation in U-shaped geothermal wells with long horizontal section," Renewable Energy, Elsevier, vol. 195(C), pages 972-989.
    10. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    11. Agson-Gani, Putra H. & Zueter, Ahmad F. & Xu, Minghan & Ghoreishi-Madiseh, Seyed Ali & Kurnia, Jundika C. & Sasmito, Agus P., 2022. "Thermal and hydraulic analysis of a novel double-pipe geothermal heat exchanger with a controlled fractured zone at the well bottom," Applied Energy, Elsevier, vol. 310(C).
    12. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Liu, Shaomin & Yang, Zijiang & Peng, Junlan & Wang, Lizhi & Guo, Yanchun, 2023. "Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards," Renewable Energy, Elsevier, vol. 207(C), pages 447-460.
    13. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    14. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    15. Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).
    16. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    17. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    18. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    20. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.