IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921005900.html
   My bibliography  Save this article

A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading

Author

Listed:
  • Yang, Jiawei
  • Paudel, Amrit
  • Gooi, Hoay Beng
  • Nguyen, Hung Dinh

Abstract

Peer-to-peer (P2P) energy trading allows prosumers to trade energy directly without intermediaries. To provide a payment system and record transaction information, public blockchain is designed to match the decentralized feature of the P2P market. The incentive for nodes outside the microgrid is removed but it is maintained for the prosumers within the microgrid. Therefore the number of miner competitors is limited to decrease the mining difficulty and its power consumption. Proof-of-Stake (PoS) consensus protocol defines the function of blockchain with its mining mechanism. Miners sacrifice part of their stake to compensate for the power losses and reduce the price gap from the traditional prosumer-to-grid trading (Feed-in-tariff). Moreover, the proposed model also contributes to increase the social welfare by improving producers’ income and consumers’ cost-saving through the designed pricing scheme, which eliminates the price gap between buying and selling. Successful mining is encouraged by rewards accordingly. A case study is introduced where a microgrid model with 27 prosumers is tested with the PoS public blockchain-based pricing scheme. The process of model implementation and smart contract creation are specifically demonstrated. Numerical results prove the feasibility and effectiveness of the proposed method.

Suggested Citation

  • Yang, Jiawei & Paudel, Amrit & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2021. "A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005900
    DOI: 10.1016/j.apenergy.2021.117154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    2. Foti, Magda & Vavalis, Manolis, 2019. "Blockchain based uniform price double auctions for energy markets," Applied Energy, Elsevier, vol. 254(C).
    3. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    4. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    5. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    6. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    7. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    8. Mario J. Miranda & Paul L. Fackler, 2004. "Applied Computational Economics and Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633094, December.
    9. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    10. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    11. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    12. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Junhong & Long, Qinfei & Liu, Rong-Peng & Liu, Wenjie & Hou, Yunhe, 2023. "Online distributed optimization for spatio-temporally constrained real-time peer-to-peer energy trading," Applied Energy, Elsevier, vol. 331(C).
    2. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.
    3. Liu, Wei-Jen & Chiu, Wei-Yu & Hua, Weiqi, 2024. "Blockchain-enabled renewable energy certificate trading: A secure and privacy-preserving approach," Energy, Elsevier, vol. 290(C).
    4. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Veerasamy, Veerapandiyan & Hu, Zhijian & Qiu, Haifeng & Murshid, Shadab & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2024. "Blockchain-enabled peer-to-peer energy trading and resilient control of microgrids," Applied Energy, Elsevier, vol. 353(PA).
    6. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    7. Chin, Hon Huin & Varbanov, Petar Sabev & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Martincová, Jana Victoria, 2024. "Blockchain-based concept for total site heat integration: A pinch-based smart contract energy management in industrial symbiosis," Energy, Elsevier, vol. 305(C).
    8. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    9. Caixiang Fan & Hamzeh Khazaei & Petr Musilek, 2024. "BPET: A Unified Blockchain-Based Framework for Peer-to-Peer Energy Trading," Future Internet, MDPI, vol. 16(5), pages 1-19, May.
    10. Nadhira Khezami & Nourcherif Gharbi & Bilel Neji & Naceur Benhadj Braiek, 2022. "Blockchain Technology Implementation in the Energy Sector: Comprehensive Literature Review and Mapping," Sustainability, MDPI, vol. 14(23), pages 1-45, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    3. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    4. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    5. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    6. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    7. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    8. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    9. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    10. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    11. Xiuli Wang & Fang Yao & Fushuan Wen, 2022. "Applications of Blockchain Technology in Modern Power Systems: A Brief Survey," Energies, MDPI, vol. 15(13), pages 1-22, June.
    12. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    13. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    14. Zeng, Yu & Wei, Xuan & Yao, Yuan & Xu, Yinliang & Sun, Hongbin & Kin Victor Chan, Wai & Feng, Wei, 2023. "Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach," Applied Energy, Elsevier, vol. 345(C).
    15. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    16. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    17. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    18. Hutty, Timothy D. & Brown, Solomon, 2024. "P2P trading of heat and power via a continuous double auction," Applied Energy, Elsevier, vol. 369(C).
    19. Li, Ruizhi & Yan, Xiaohe & Liu, Nian, 2022. "Hybrid energy sharing considering network cost for prosumers in integrated energy systems," Applied Energy, Elsevier, vol. 323(C).
    20. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.