IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921004104.html
   My bibliography  Save this article

Improved quasi-steady-state power flow calculation for district heating systems: A coupled Newton-Raphson approach

Author

Listed:
  • Dancker, Jonte
  • Wolter, Martin

Abstract

District heating systems have a considerable storage capability due to their dynamic thermal behavior (i.e. the thermal inertia of the water flow). Using this storage can support a secure, reliable, and efficient integrated energy system operation with a high share of volatile renewable energy sources. To use this flexibility, a joint analysis is necessary that includes the dynamic thermal behavior. Existing methods determine the dynamic thermal behavior by separated hydraulic and thermal equation systems, which are solved consecutively. This complicates the analysis because dependencies between temperatures and mass flow rates are not depicted directly. Also, this decoupled representation does not allow an easy analysis of the interactions in an integrated energy system as is already possible in steady-state analysis. Thus, this paper extends the steady-state methods by including the dynamic thermal behavior. The equations describing the hydraulic and dynamic thermal behavior are joined in a single equation system and solved simultaneously in a coupled Newton-Raphson power flow calculation. For this, the dynamic thermal behavior is described by the node method. At the same time, the accuracy of the node method is improved by enhancing the temperature-gradient method. The validation shows a high accuracy independently of the simulation time increment. Because the method is based on the steady-state analysis it enhances the wide area of application by introducing the dynamic thermal behavior. With its high accuracy and its coupled approach, the method is suitable for future investigations of the interdependencies of integrated energy systems.

Suggested Citation

  • Dancker, Jonte & Wolter, Martin, 2021. "Improved quasi-steady-state power flow calculation for district heating systems: A coupled Newton-Raphson approach," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004104
    DOI: 10.1016/j.apenergy.2021.116930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921004104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    2. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Xuejing & Zheng, Wandong & Miao, Qingwei & Lu, Gang, 2017. "Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation," Applied Energy, Elsevier, vol. 206(C), pages 900-910.
    3. Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
    4. Jiaqi Shi & Ling Wang & Yingrui Wang & Jianhua Zhang, 2017. "Generalized Energy Flow Analysis Considering Electricity Gas and Heat Subsystems in Local-Area Energy Systems Integration," Energies, MDPI, vol. 10(4), pages 1-17, April.
    5. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    6. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
    7. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Nielsen, Steffen & Möller, Bernd, 2012. "Excess heat production of future net zero energy buildings within district heating areas in Denmark," Energy, Elsevier, vol. 48(1), pages 23-31.
    9. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    10. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
    11. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
    12. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
    2. Dancker, Jonte & Wolter, Martin, 2022. "A coupled transient gas flow calculation with a simultaneous calorific-value-gradient improved hydrogen tracking," Applied Energy, Elsevier, vol. 316(C).
    3. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    4. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    5. Zhang, Suhan & Gu, Wei & Zhang, Xiao-ping & Lu, Hai & Lu, Shuai & Yu, Ruizhi & Qiu, Haifeng, 2022. "Fully analytical model of heating networks for integrated energy systems," Applied Energy, Elsevier, vol. 327(C).
    6. Lin, Xiaojie & Mao, Yihui & Chen, Jiaying & Zhong, Wei, 2023. "Dynamic modeling and uncertainty quantification of district heating systems considering renewable energy access," Applied Energy, Elsevier, vol. 349(C).
    7. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    2. Dancker, Jonte & Klabunde, Christian & Wolter, Martin, 2021. "Sensitivity factors in electricity-heating integrated energy systems," Energy, Elsevier, vol. 229(C).
    3. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    4. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Yao, Shuai & Gu, Wei & Wu, Jianzhong & Lu, Hai & Zhang, Suhan & Zhou, Yue & Lu, Shuai, 2022. "Dynamic energy flow analysis of the heat-electricity integrated energy systems with a novel decomposition-iteration algorithm," Applied Energy, Elsevier, vol. 322(C).
    6. Li, Peng & Li, Shuang & Yu, Hao & Yan, Jinyue & Ji, Haoran & Wu, Jianzhong & Wang, Chengshan, 2022. "Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics," Applied Energy, Elsevier, vol. 307(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    9. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    10. Ma, Houzhen & Liu, Chunyang & Zhao, Haoran & Zhang, Hengxu & Wang, Mengxue & Wang, Xiaobing, 2023. "A novel analytical unified energy flow calculation method for integrated energy systems based on holomorphic embedding," Applied Energy, Elsevier, vol. 344(C).
    11. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    14. He, Ke-Lun & Chen, Qun & Ma, Huan & Zhao, Tian & Hao, Jun-Hong, 2020. "An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint," Energy, Elsevier, vol. 211(C).
    15. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    16. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    17. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    18. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    19. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
    20. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.