IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p5012-d1754342.html
   My bibliography  Save this article

Validation Strategies for District Heating Network Models

Author

Listed:
  • Jakub Kuś

    (AGH University of Krakow, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland
    PGE Energia Ciepła S.A., ul. Złota 59, 00-120 Warszawa, Poland)

  • Łukasz Mika

    (AGH University of Krakow, Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Michał Żurawski

    (AGH University of Krakow, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland
    PGE Energia Ciepła S.A., ul. Złota 59, 00-120 Warszawa, Poland)

Abstract

Due to the complexity of district heating systems, improved novel methods of district heating network (DHN) simulation are still being introduced in the literature. The subject of validation strategies for DHN simulation models emerges as one that has not been thoroughly analyzed before. Based on the considered subset of models reported in the literature, a general classification of the validation strategies of DHN models is proposed in this study. The proposed classification is based on two criteria: data and topology used in the validation case studies. This study provides insights into validation strategies for DHN models, their practical implementation and evaluation criteria, and the approaches used in the validation of these models. The standardization of DHN model validation approaches and the possibility to replicate the validation results seem to be limited. It seems that the dissemination of dedicated benchmarks or commonly accepted methodologies featuring evaluation criteria suitable for models’ intended applications could have a positive impact on the thoroughness of future DHN model validation and the replicability of validation results. To assist in future research, preliminary validation guidelines are proposed that may serve as a starting point in designing validation case studies for DHN models.

Suggested Citation

  • Jakub Kuś & Łukasz Mika & Michał Żurawski, 2025. "Validation Strategies for District Heating Network Models," Energies, MDPI, vol. 18(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:5012-:d:1754342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/5012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/5012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tzouganakis, Panteleimon & Fotopoulou, Maria & Rakopoulos, Dimitrios & Romanchenko, Dmytro & Nikolopoulos, Nikolaos, 2025. "District heating system analysis and design optimization," Energy, Elsevier, vol. 326(C).
    2. Westphal, Jan & Brunnemann, Johannes & Speerforck, Arne, 2025. "Enabling the dynamic simulation of an unaggregated, meshed district heating network with several thousand substations," Energy, Elsevier, vol. 322(C).
    3. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    4. Kotilainen, Juhani & Hellstedt, Jarmo & Tolvanen, Henrik, 2025. "Determining economic feasibility of supply temperature reduction in existing district heating system through thermohydraulic modelling," Energy, Elsevier, vol. 329(C).
    5. Li, Chenghao & Prasad, Sunku & Bai, Yunfei & Turkeri, Cebrail & Wang, Jihong, 2025. "A quasi-dynamic model and comprehensive simulation study of district heating networks considering temperature delay," Energy, Elsevier, vol. 318(C).
    6. Agner, Felix & Jensen, Christian Møller & Rantzer, Anders & Kallesøe, Carsten Skovmose & Wisniewski, Rafal, 2024. "Hydraulic parameter estimation for district heating based on laboratory experiments," Energy, Elsevier, vol. 312(C).
    7. Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
    8. Zarin Pass, R. & Wetter, M. & Piette, M.A., 2018. "A thermodynamic analysis of a novel bidirectional district heating and cooling network," Energy, Elsevier, vol. 144(C), pages 20-30.
    9. Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
    10. Dominik Schojda & Jan Scheipers & Jürgen Roes & Harry Hoster, 2025. "Modelling and Transient Simulation of District Heating Networks Based on a Control Theory Approach," Energies, MDPI, vol. 18(3), pages 1-22, January.
    11. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
    12. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Xuejing & Zheng, Wandong & Miao, Qingwei & Lu, Gang, 2017. "Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation," Applied Energy, Elsevier, vol. 206(C), pages 900-910.
    13. Duquette, Jean & Rowe, Andrew & Wild, Peter, 2016. "Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow," Applied Energy, Elsevier, vol. 178(C), pages 383-393.
    14. Dancker, Jonte & Wolter, Martin, 2021. "Improved quasi-steady-state power flow calculation for district heating systems: A coupled Newton-Raphson approach," Applied Energy, Elsevier, vol. 295(C).
    15. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    16. Sollich, Martin & Van Belle, Vincent & Wack, Yannick & Salenbien, Robbe & Baelmans, Martine & Blommaert, Maarten, 2025. "Unlocking temperature reduction of cogeneration district heating networks through automated substation retrofit," Energy, Elsevier, vol. 322(C).
    17. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    18. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
    19. Jon Williamsson, 2023. "Business Model Innovation for Digitalization in the Swedish District Heating Sector," Energies, MDPI, vol. 16(21), pages 1-10, November.
    20. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    21. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    22. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
    2. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    3. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    4. Westphal, Jan & Brunnemann, Johannes & Speerforck, Arne, 2025. "Enabling the dynamic simulation of an unaggregated, meshed district heating network with several thousand substations," Energy, Elsevier, vol. 322(C).
    5. Dibos, Sina & Pesch, Thiemo & Benigni, Andrea, 2024. "HeatNetSim: An open-source simulation tool for heating and cooling networks suitable for future energy systems," Energy, Elsevier, vol. 312(C).
    6. Ke Xu & Dengxin Ai & Changlong Sun & Yan Qi & Jiaojiao Wang & Fan Yang & Hechen Ren, 2025. "Green’s Function Approach for Simulating District Heating Networks," Energies, MDPI, vol. 18(10), pages 1-13, May.
    7. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Dancker, Jonte & Wolter, Martin, 2021. "Improved quasi-steady-state power flow calculation for district heating systems: A coupled Newton-Raphson approach," Applied Energy, Elsevier, vol. 295(C).
    9. Li, Chenghao & Prasad, Sunku & Bai, Yunfei & Turkeri, Cebrail & Wang, Jihong, 2025. "A quasi-dynamic model and comprehensive simulation study of district heating networks considering temperature delay," Energy, Elsevier, vol. 318(C).
    10. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    11. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    12. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    13. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
    14. Vivian, Jacopo & Quaggiotto, Davide & Zarrella, Angelo, 2020. "Increasing the energy flexibility of existing district heating networks through flow rate variations," Applied Energy, Elsevier, vol. 275(C).
    15. Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
    16. Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
    17. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
    18. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:5012-:d:1754342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.