IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp900-910.html
   My bibliography  Save this article

Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation

Author

Listed:
  • Wang, Yaran
  • You, Shijun
  • Zhang, Huan
  • Zheng, Xuejing
  • Zheng, Wandong
  • Miao, Qingwei
  • Lu, Gang

Abstract

Predicting the thermal transients of district heating (DH) network is the key to simulation analysis and operation optimization of DH system. Numerical methods can provide accurate prediction and sufficient information of thermal transients. But the high computation burden restricts the application of numerical methods, especially when applied to operation optimization of large DH networks. This dilemma can be relieved by suitably increasing the scales of time and spatial steps, but do not obviously affect the precision of the numerical models. However, there are few researches concerning such topics. In this paper, the optimal scales of time and spatial steps of a newly proposed implicit upwind model and the characteristic line model were studied for fast and accurate calculation. Results show that both models can ensure the prediction errors of the pipeline outlet temperature within ±0.5°C. For characteristic line model, the recommended time step and spatial step are 60s and 170m<Δx<520m. And for implicit upwind method, the recommended time step and spatial step are 20s and 30m. Besides, the implicit upwind model is unconditionally stable and provides more information on temperature distribution along the pipeline, especially when small and fast propagation occurs.

Suggested Citation

  • Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Xuejing & Zheng, Wandong & Miao, Qingwei & Lu, Gang, 2017. "Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation," Applied Energy, Elsevier, vol. 206(C), pages 900-910.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:900-910
    DOI: 10.1016/j.apenergy.2017.08.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    2. Perpar, Matjaz & Rek, Zlatko & Bajric, Suvad & Zun, Iztok, 2012. "Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation," Energy, Elsevier, vol. 44(1), pages 197-210.
    3. Dobos, László & Abonyi, János, 2011. "Controller tuning of district heating networks using experiment design techniques," Energy, Elsevier, vol. 36(8), pages 4633-4639.
    4. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
    5. Duquette, Jean & Rowe, Andrew & Wild, Peter, 2016. "Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow," Applied Energy, Elsevier, vol. 178(C), pages 383-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
    2. Wu, Xuewei & Fang, Jiakun & Chen, Zhe, 2022. "Distributionally robust unit commitment of integrated electricity and heat system under bi-directional variable mass flow," Applied Energy, Elsevier, vol. 326(C).
    3. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Accounting for pipeline thermal capacity in district heating simulations," Energy, Elsevier, vol. 219(C).
    4. Liang, Weikun & Lin, Shunjiang & Lei, Shunbo & Xie, Yuquan & Tang, Zhiqiang & Liu, Mingbo, 2022. "Distributionally robust optimal dispatch of CCHP campus microgrids considering the time-delay of pipelines and the uncertainty of renewable energy," Energy, Elsevier, vol. 239(PC).
    5. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    6. Chen, Binbin & Wu, Wenchuan & Guo, Qinglai & Sun, Hongbin, 2022. "An efficient optimal energy flow model for integrated energy systems based on energy circuit modeling in the frequency domain," Applied Energy, Elsevier, vol. 326(C).
    7. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    8. He, Ke-Lun & Chen, Qun & Ma, Huan & Zhao, Tian & Hao, Jun-Hong, 2020. "An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint," Energy, Elsevier, vol. 211(C).
    9. Li, Peng & Li, Shuang & Yu, Hao & Yan, Jinyue & Ji, Haoran & Wu, Jianzhong & Wang, Chengshan, 2022. "Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics," Applied Energy, Elsevier, vol. 307(C).
    10. Roberto Tascioni & Luca Cioccolanti & Luca Del Zotto & Emanuele Habib, 2020. "Numerical Investigation of Pipelines Modeling in Small-Scale Concentrated Solar Combined Heat and Power Plants," Energies, MDPI, vol. 13(2), pages 1-16, January.
    11. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    12. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    14. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
    15. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Annelies Vandermeulen & Ina De Jaeger & Tijs Van Oevelen & Dirk Saelens & Lieve Helsen, 2020. "Analysis of Building Parameter Uncertainty in District Heating for Optimal Control of Network Flexibility," Energies, MDPI, vol. 13(23), pages 1-25, November.
    17. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    18. Dancker, Jonte & Wolter, Martin, 2021. "Improved quasi-steady-state power flow calculation for district heating systems: A coupled Newton-Raphson approach," Applied Energy, Elsevier, vol. 295(C).
    19. Vivian, Jacopo & Quaggiotto, Davide & Zarrella, Angelo, 2020. "Increasing the energy flexibility of existing district heating networks through flow rate variations," Applied Energy, Elsevier, vol. 275(C).
    20. Jiawei Wang & Aidong Zeng & Yaheng Wan, 2023. "Multi-Time-Scale Optimal Scheduling of Integrated Energy System Considering Transmission Delay and Heat Storage of Heating Network," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    21. Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
    22. Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
    23. Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
    24. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    2. Seiya Maki & Satoshi Ohnishi & Minoru Fujii & Naohiro Goto & Lu Sun, 2022. "Using waste to supply steam for industry transition: Selection of target industries through economic evaluation and statistical analysis," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1475-1486, August.
    3. Perpar, Matjaž & Rek, Zlatko, 2020. "Soil temperature gradient as a useful tool for small water leakage detection from district heating pipes in buried channels," Energy, Elsevier, vol. 201(C).
    4. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    5. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    6. Vivian, Jacopo & Quaggiotto, Davide & Zarrella, Angelo, 2020. "Increasing the energy flexibility of existing district heating networks through flow rate variations," Applied Energy, Elsevier, vol. 275(C).
    7. Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2018. "Model for optimal malfunction management in extended district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 519-530.
    9. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    10. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    11. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    12. Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
    13. Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.
    14. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Miao, Qingwei, 2017. "Hydraulic performance optimization of meshed district heating network with multiple heat sources," Energy, Elsevier, vol. 126(C), pages 603-621.
    15. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    16. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    18. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    19. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:900-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.