IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v289y2021ics0306261921001793.html
   My bibliography  Save this article

A techno-economic assessment on the adoption of latent heat thermal energy storage systems for district cooling optimal dispatch & operations

Author

Listed:
  • Mazzoni, Stefano
  • Sze, Jia Yin
  • Nastasi, Benedetto
  • Ooi, Sean
  • Desideri, Umberto
  • Romagnoli, Alessandro

Abstract

The adoption of high-density phase change materials as cold thermal energy storage media have been considered as potential alternatives to water and ice. In this paper, the implementation of these media has been investigated in the context of district cooling in mixed-used building micro-grids whereby the cold thermal energy storage is retrofitted into an existing eco-building cluster. The techno-economic feasibility of implementing phase change materials, which includes eutectic salt, polyethylene glycol and paraffin as cold thermal energy storage media for district cooling, have been evaluated by computing the economic dispatch of a cooling bus network using mixed-integer quadratic programming. Furthermore, the impact of high-density storage media with a reduced footprint on the integration and design of cold thermal energy storage systems in district cooling has been included in the analysis. The capital expenditure of cold thermal energy storage systems, the land rental price for required occupancy and operating expenditure are used to determine the net present value after 20 years. Through peak shaving, optimally sized cold thermal energy storage has shown a better alternative substituting one of the two chillers. The smaller chiller (1200 kWc) is no longer required in the plant, giving significant savings in capital expenditure. The cost-benefit analysis also showed that only eutectic salt phase change materials are competitive with ice, with a net present value approaching 200,000 $ after 20 years. When phase change materials are adopted, especially if compared with water, the building operations and related costs are significantly less affected by large fluctuations in land rental price given its smaller footprint, thus posing significantly lower financial risks.

Suggested Citation

  • Mazzoni, Stefano & Sze, Jia Yin & Nastasi, Benedetto & Ooi, Sean & Desideri, Umberto & Romagnoli, Alessandro, 2021. "A techno-economic assessment on the adoption of latent heat thermal energy storage systems for district cooling optimal dispatch & operations," Applied Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:appene:v:289:y:2021:i:c:s0306261921001793
    DOI: 10.1016/j.apenergy.2021.116646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    2. Castilla Manuel V. & Martin Francisco, 2021. "A Powerful Tool for Optimal Control of Energy Systems in Sustainable Buildings: Distortion Power Bivector," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Hongwei Li & Xingmin Li & Siyu Chen & Shuaibing Li & Yongqiang Kang & Xiping Ma, 2024. "Low-Carbon Optimal Scheduling of Integrated Energy System Considering Multiple Uncertainties and Electricity–Heat Integrated Demand Response," Energies, MDPI, vol. 17(1), pages 1-20, January.
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    5. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    6. Filip Vrbanc & Mario Vašak & Vinko Lešić, 2023. "Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control," Energies, MDPI, vol. 16(19), pages 1-18, September.
    7. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    8. Heine, Karl & Tabares-Velasco, Paulo Cesar & Deru, Michael, 2021. "Design and dispatch optimization of packaged ice storage systems within a connected community," Applied Energy, Elsevier, vol. 298(C).
    9. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).
    10. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:289:y:2021:i:c:s0306261921001793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.