IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306607.html
   My bibliography  Save this article

Fuel processor with vanadium alloy membranes for converting CH4 into ultrapure hydrogen to generate electricity via fuel cell

Author

Listed:
  • Alimov, V.N.
  • Bobylev, I.V.
  • Busnyuk, A.O.
  • Kolgatin, S.N.
  • Peredistov, E.Yu.
  • Livshits, A.I.

Abstract

Membrane technologies allow for significant simplification of the scheme of hydrocarbon conversion for obtaining ultrapure hydrogen to feed low-temperature fuel cells. However, commercially available membranes for hydrogen extraction utilize Pd alloys and therefore are expensive even while being not very efficient. Recently developed membranes of vanadium alloys demonstrate high efficiency combined with high practical utility. These features, for the first time, allowed for design and manufacture of a fuel processor prototype based on non-palladium membranes. 18 tubular-shaped membranes of vanadium alloy, 6 mm in diameter and 23.5 cm in length, were welded in a completely leakproof membrane system. This membrane system was integrated into a classic CH4 steam conversion scheme, which comprised a reformer followed by a single-step water gas shift reactor. The reformer was designed to convert 75% of CH4 to hydrogen, with the rest providing heat required for the reaction. At CH4 consumption of 6 slpm, steam-to-carbon ratio of 3, and total pressure of water–gas shift mixture of 1.2 MPa, the membrane system was extracting 80% of produced hydrogen, and as a result the fuel processor was providing 12 slpm of ultrapure hydrogen at 0.15 MPa to feed a 1 kW polymer electrolyte membrane fuel cell. As part of the fuel processor, the membrane system kept its initial throughput and perfect tightness through all the experimental process.

Suggested Citation

  • Alimov, V.N. & Bobylev, I.V. & Busnyuk, A.O. & Kolgatin, S.N. & Peredistov, E.Yu. & Livshits, A.I., 2020. "Fuel processor with vanadium alloy membranes for converting CH4 into ultrapure hydrogen to generate electricity via fuel cell," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306607
    DOI: 10.1016/j.apenergy.2020.115148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haghighat Mamaghani, Alireza & Najafi, Behzad & Casalegno, Andrea & Rinaldi, Fabio, 2017. "Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant," Applied Energy, Elsevier, vol. 192(C), pages 519-529.
    2. Al-Mufachi, N.A. & Rees, N.V. & Steinberger-Wilkens, R., 2015. "Hydrogen selective membranes: A review of palladium-based dense metal membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 540-551.
    3. Jannelli, Elio & Minutillo, Mariagiovanna & Perna, Alessandra, 2013. "Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances," Applied Energy, Elsevier, vol. 108(C), pages 82-91.
    4. Spallina, V. & Matturro, G. & Ruocco, C. & Meloni, E. & Palma, V. & Fernandez, E. & Melendez, J. & Pacheco Tanaka, A.D. & Viviente Sole, J.L. & van Sint Annaland, M. & Gallucci, F., 2018. "Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design," Energy, Elsevier, vol. 143(C), pages 666-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    4. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    5. Jahromi, Arash Fellah & Ruiz-López, Estela & Dorado, Fernando & Baranova, Elena A. & de Lucas-Consuegra, Antonio, 2022. "Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production," Renewable Energy, Elsevier, vol. 183(C), pages 515-523.
    6. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    7. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    8. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    9. Xia, Lingchao & Ni, Meng & Xu, Qidong & Xu, Haoran & Zheng, Keqing, 2021. "Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 294(C).
    10. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    11. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    12. Hyun Sung Kang & Myong-Hwan Kim & Yoon Hyuk Shin, 2020. "Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC," Energies, MDPI, vol. 13(23), pages 1-18, November.
    13. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    14. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    15. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    16. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
    17. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    18. Ribeirinha, P. & Abdollahzadeh, M. & Sousa, J.M. & Boaventura, M. & Mendes, A., 2017. "Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell," Applied Energy, Elsevier, vol. 202(C), pages 6-19.
    19. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    20. Shan Dong & Yi Lin & Jiajun Hu & Chenglin Gu & Leilin Ding & Xinjian Zhang & Shi Jiang & Yu Guo, 2023. "Preparation of an Anodic Alumina-Supported Ni Catalyst and Development of a Catalytic Plate Reformer for the Steam Reforming of Methane," Energies, MDPI, vol. 16(8), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.