IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304372.html
   My bibliography  Save this article

Sandstorm erosion on solar reflectors: Highly realistic modeling of artificial aging tests based on advanced site assessment

Author

Listed:
  • Wiesinger, F.
  • Sutter, F.
  • Fernández-García, A.
  • Wette, J.
  • Wolfertstetter, F.
  • Hanrieder, N.
  • Schmücker, Martin
  • Pitz-Paal, R.

Abstract

In this work a guideline is developed which allows for a highly realistic laboratory simulation of sandstorm effects on glass components for the solar industry. So far no standardized test procedure is developed to test components against each other and predict their lifetime in the field to a realistic extent. One important reason for that matter is the strong variation from one site to another which would have to be addressed in a standardized test procedure. To overcome this issue, the meteorological and geological parameters of five outdoor sites are investigated in this work regarding their erosion potential, and additionally state of the art silvered-glass reflector samples are exposed. A special focus is laid on the relative humidity, rh, and wind velocity, u, present at the same time (here named as u-rh couple). It is shown that strong winds accompanied with low relative humidity are more often measured at sites where the reflectors are more severely damaged by impacting sand particles. Apart from the u-rh analysis, the mineralogical characteristics of the sites are investigated and both the particle size distribution and the chemical composition of the soil are presented. In total, six erosion determining factors are identified and the five investigated sites are qualitatively ranked and sorted into three erosivity classes. The input parameters of a laboratory erosion setup were tailored in order to meet the conditions of the three erosivity classes. Therefore state of the art reflectance measurements are used, but also a novel method, based on image processing of microscope pictures of the mechanical defects on the glass surface is presented. This method enables the determination of a defect size density distribution (DSDD). The test parameters of the laboratory setup are adjusted in order to achieve a similar DSDD like observed outdoor for the three different erosivity classes.

Suggested Citation

  • Wiesinger, F. & Sutter, F. & Fernández-García, A. & Wette, J. & Wolfertstetter, F. & Hanrieder, N. & Schmücker, Martin & Pitz-Paal, R., 2020. "Sandstorm erosion on solar reflectors: Highly realistic modeling of artificial aging tests based on advanced site assessment," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304372
    DOI: 10.1016/j.apenergy.2020.114925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahar Bouaddi & Aránzazu Fernández-García & Chris Sansom & Jon Ander Sarasua & Fabian Wolfertstetter & Hicham Bouzekri & Florian Sutter & Itiziar Azpitarte, 2018. "A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    2. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
    3. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    4. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    5. Bouaouadja, N. & Bouzid, S. & Hamidouche, M. & Bousbaa, C. & Madjoubi, M., 2000. "Effects of sandblasting on the efficiencies of solar panels," Applied Energy, Elsevier, vol. 65(1-4), pages 99-105, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Terrados-Cristos & Francisco Ortega-Fernández & Marina Díaz-Piloñeta & Vicente Rodríguez Montequín & José Valeriano Álvarez Cabal, 2023. "Enhancing Wind Erosion Assessment of Metal Structures on Dry and Degraded Lands through Machine Learning," Land, MDPI, vol. 12(8), pages 1-16, July.
    2. Wiesinger, F. & Sutter, F. & Fernández-García, A. & Wette, J. & Hanrieder, N., 2021. "Sandstorm erosion on solar reflectors: A field study on height and orientation dependence," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    4. Wiesinger, F. & Sutter, F. & Fernández-García, A. & Wette, J. & Hanrieder, N., 2021. "Sandstorm erosion on solar reflectors: A field study on height and orientation dependence," Energy, Elsevier, vol. 217(C).
    5. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    6. Fabiana Lisco & Farwah Bukhari & Soňa Uličná & Kenan Isbilir & Kurt L. Barth & Alan Taylor & John M. Walls, 2020. "Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass," Energies, MDPI, vol. 13(15), pages 1-15, July.
    7. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    8. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    9. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    10. Truong-Ba, Huy & Cholette, Michael E. & Picotti, Giovanni & Steinberg, Theodore A. & Manzolini, Giampaolo, 2020. "Sectorial reflectance-based cleaning policy of heliostats for Solar Tower power plants," Renewable Energy, Elsevier, vol. 166(C), pages 176-189.
    11. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    12. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    14. Simone Pedrazzi & Giulio Allesina & Alberto Muscio, 2018. "Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation," Energies, MDPI, vol. 11(12), pages 1-13, December.
    15. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.
    16. Sun, Ke & Lu, Lin & Jiang, Yu & Wang, Yuanhao & Zhou, Kun & He, Zhu, 2018. "Integrated effects of PM2.5 deposition, module surface conditions and nanocoatings on solar PV surface glass transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4107-4120.
    17. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Dahlioui, Dounia & El Hamdani, Fayrouz & Djdiaa, Abdelali & Martínez López, Teodoro & Bouzekri, Hicham, 2023. "Assessment of dry and wet cleaning of aluminum mirrors toward water consumption reduction," Renewable Energy, Elsevier, vol. 205(C), pages 248-255.
    19. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    20. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.