IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302452.html
   My bibliography  Save this article

Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads

Author

Listed:
  • Maharjan, Salish
  • Sampath Kumar, Dhivya
  • Khambadkone, Ashwin M.

Abstract

The Photovoltaic (PV) sources have become the most popular renewable energy resources as it is modular and are deployed quickly. However, the distributed PVs are highly volatile and can have high ramping characteristics where the ramping can go up to 90% of its capacity in about 20 s due to events such as the passing of fast-moving clouds. This kind of PV ramps with high magnitudes can lead to voltage instability in distribution networks that are usually dominated by Induction motor (IM) loads. This paper explains the mechanism of such an instability analytically using Q-V analysis with distribution feeder and IM load characteristics. Highlighting the gradual replacement of IM loads by Variable Speed Drive (VSD) loads due to energy efficiency policies, the paper demonstrates the enhanced voltage stability under VSD loads by both time simulation and analytical approach. Furthermore, the analysis is extended to a realistic distribution network namely, United Kingdom General Distribution System (UKGDS) and extensive case studies are conducted to analyze the voltage stability during PV ramping events at various load compositions of IMs and VSDs. Moreover, the minimum VSD penetration level required to avert the voltage instability at various PV penetration levels have also been determined.

Suggested Citation

  • Maharjan, Salish & Sampath Kumar, Dhivya & Khambadkone, Ashwin M., 2020. "Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302452
    DOI: 10.1016/j.apenergy.2020.114733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Licheng & Yan, Ruifeng & Saha, Tapan Kumar, 2019. "Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wei & Li, Peng & Fu, Xiaopeng & Yan, Jinyue & Wang, Chengshan, 2022. "Flexible Shifted-Frequency analysis for Multi-Timescale simulations of active distribution networks," Applied Energy, Elsevier, vol. 321(C).
    2. Jinhua Zhang & Liding Zhu & Shengchao Zhao & Jie Yan & Lingling Lv, 2023. "Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network," Energies, MDPI, vol. 16(5), pages 1-21, February.
    3. Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
    4. Tsao, Yu-Chung & Beyene, Tsehaye Dedimas & Thanh, Vo-Van & Gebeyehu, Sisay Geremew & Kuo, Tsai-Chi, 2022. "Power distribution network design considering the distributed generations and differential and dynamic pricing," Energy, Elsevier, vol. 241(C).
    5. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Polat, Onder & Gul, Omer, 2022. "Development of a probabilistic short-term voltage quality assessment method with the weak point detection capability through the dynamic analyses," Applied Energy, Elsevier, vol. 326(C).
    7. Wen, Haoran & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Wen, Huiqing & Yan, Ke, 2023. "A regional solar forecasting approach using generative adversarial networks with solar irradiance maps," Renewable Energy, Elsevier, vol. 216(C).
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    3. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    5. Wasiak, Irena & Szypowski, Michał & Kelm, Paweł & Mieński, Rozmysław & Wędzik, Andrzej & Pawełek, Ryszard & Małaczek, Michał & Urbanek, Przemysław, 2022. "Innovative energy management system for low-voltage networks with distributed generation based on prosumers’ active participation," Applied Energy, Elsevier, vol. 312(C).
    6. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    7. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    8. Marten Fesefeldt & Massimiliano Capezzali & Mokhtar Bozorg & Riina Karjalainen, 2023. "Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    9. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    10. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    12. Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).
    13. Ružica Kljajić & Predrag Marić & Nemanja Mišljenović & Marina Dubravac, 2024. "An Optimized Strategy for the Integration of Photovoltaic Systems and Electric Vehicles into the Real Distribution Grid," Energies, MDPI, vol. 17(22), pages 1-18, November.
    14. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    15. Jackson Hannagan & Rhys Woszczeiko & Thomas Langstaff & Weixiang Shen & John Rodwell, 2022. "The Impact of Household Appliances and Devices: Consider Their Reactive Power and Power Factors," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
    16. Joel Alpízar-Castillo & Victor Vega-Garita & Nishant Narayan & Laura Ramirez-Elizondo, 2023. "Open-Access Model of a PV–BESS System: Quantifying Power and Energy Exchange for Peak-Shaving and Self Consumption Applications," Energies, MDPI, vol. 16(14), pages 1-16, July.
    17. Antić, Tomislav & Capuder, Tomislav, 2024. "A geographic information system-based modelling, analysing and visualising of low voltage networks: The potential of demand time-shifting in the power quality improvement," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.