IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300908.html
   My bibliography  Save this article

Multiple injection for improving knock, gaseous and particulate matter emissions in direct injection SI engines

Author

Listed:
  • Han, Taehoon
  • Singh, Ripudaman
  • Lavoie, George
  • Wooldridge, Margaret
  • Boehman, André

Abstract

Advances in fuel injector technology have enabled research and development on a large variety of direct injection spark ignition (DISI) engine fueling strategies targeted to improve engine performance and reduce engine-out emissions. This study explores the effect of multiple injections on knock, engine efficiency and stability, and particulate number and gaseous emissions on a single-cylinder DISI research engine. Work to date on multiple injections in the literature is reviewed, and then two aspects of multiple injection strategies are experimentally investigated: the number of injections (up to five times in a cycle); and the timing of the injections (classified relative to the timing of intake valve opening and closing). A boosted, single-cylinder research engine equipped with a state-of-the-art piezoelectric hollow cone spray direct injector and research-grade E10 gasoline was used for the study. The results show multiple injections maintain torque and combustion stability compared with single injection and slightly increase the knock limits and indicated thermal efficiencies (maximum 0.7% absolute, 2.8% relative compared with single-injection baseline) due to improved heat release phasing, especially with an additional late injection during the intake valve closed (compression stroke) period. The gaseous pollutant emissions including nitrogen oxides and unburned hydrocarbons were reduced by 25% with multiple injections, particularly with injection during the compression stroke. In contrast, carbon monoxide emissions increased with multiple injections for all conditions. Increasing the number of injection events significantly reduced particulate number emissions (half with each additional injection), and the decrease in particulate number was not sensitive to the injection timing.

Suggested Citation

  • Han, Taehoon & Singh, Ripudaman & Lavoie, George & Wooldridge, Margaret & Boehman, André, 2020. "Multiple injection for improving knock, gaseous and particulate matter emissions in direct injection SI engines," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300908
    DOI: 10.1016/j.apenergy.2020.114578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suh, Hyun Kyu, 2011. "Investigations of multiple injection strategies for the improvement of combustion and exhaust emissions characteristics in a low compression ratio (CR) engine," Applied Energy, Elsevier, vol. 88(12), pages 5013-5019.
    2. Ortiz-Soto, Elliott A. & Lavoie, George A. & Martz, Jason B. & Wooldridge, Margaret S. & Assanis, Dennis N., 2014. "Enhanced heat release analysis for advanced multi-mode combustion engine experiments," Applied Energy, Elsevier, vol. 136(C), pages 465-479.
    3. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    4. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    5. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    6. Costa, M. & Sorge, U. & Merola, S. & Irimescu, A. & La Villetta, M. & Rocco, V., 2016. "Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission," Energy, Elsevier, vol. 117(P2), pages 405-415.
    7. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    8. Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinglin Zhang & Zhaoping Xu & Shuangshuang Liu & Liang Liu, 2020. "Effects of Injector Spray Angle on Performance of an Opposed-Piston Free-Piston Engine," Energies, MDPI, vol. 13(14), pages 1-17, July.
    2. Novella, Ricardo & García, Antonio & Gomez-Soriano, Josep & Fogué-Robles, Álvaro, 2023. "Exploring dilution potential for full load operation of medium duty hydrogen engine for the transport sector," Applied Energy, Elsevier, vol. 349(C).
    3. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    4. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    2. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    3. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    4. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    5. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    6. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    7. Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
    8. Giovanni Cecere & Adrian Irimescu & Simona Silvia Merola & Luciano Rolando & Federico Millo, 2022. "Lean Burn Flame Kernel Characterization for Different Spark Plug Designs and Orientations in an Optical GDI Engine," Energies, MDPI, vol. 15(9), pages 1-17, May.
    9. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    11. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    12. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    13. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    14. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    15. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    16. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    17. Pla, Benjamí n & Bares, Pau & Jiménez, Irina & Guardiola, Carlos & Zhang, Yahui & Shen, Tielong, 2020. "A fuzzy logic map-based knock control for spark ignition engines," Applied Energy, Elsevier, vol. 280(C).
    18. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    19. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    20. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.