IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319932.html
   My bibliography  Save this article

Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments

Author

Listed:
  • Watanabe, Noriaki
  • Saito, Kohei
  • Okamoto, Atsushi
  • Nakamura, Kengo
  • Ishibashi, Takuya
  • Saishu, Hanae
  • Komai, Takeshi
  • Tsuchiya, Noriyoshi

Abstract

Superhot geothermal environments in granitic crusts of ca. 400–500 °C and depths of 2–4 km are recognized as a frontier of geothermal energy. In developing such environments, hydraulic fracturing is a promising way to create or recreate permeable fracture networks to effectively access the energy through enhanced geothermal systems (EGS). However, there is a concern about the possibility of stabilizing or enhancing the permeability created by hydraulic fracturing, required for sustainable and profitable energy production, because pressure solution of the fracture surfaces may reduce permeability. On the other hand, permeability may be enhanced by free-face dissolution of the fracture surfaces even if pressure solution occurs. However, the rates of permeability reduction and enhancement are not fully understood, and the possibility of stabilizing/enhancing permeability is therefore unclear. We have conducted hydrothermal flow-through experiments on 400 °C fractured granite samples to clarify the influences of stress level and plasticity of the fracture on the rate of permeability reduction by pressure solution and the influences of pore water pressure and corresponding mineral solubility on the rate of permeability enhancement by free-face dissolution. Results suggest that permeability may be either stabilized or enhanced in superhot EGS even when pressure solution can occur by keeping the difference between the concentration of the pore water and the solubility of quartz higher than the stress-dependent permeability stabilization criterion.

Suggested Citation

  • Watanabe, Noriaki & Saito, Kohei & Okamoto, Atsushi & Nakamura, Kengo & Ishibashi, Takuya & Saishu, Hanae & Komai, Takeshi & Tsuchiya, Noriyoshi, 2020. "Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319932
    DOI: 10.1016/j.apenergy.2019.114306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    2. Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.
    3. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    4. Babaei, Masoud & Nick, Hamidreza M., 2019. "Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    2. Chai, Rukuan & Liu, Yuetian & Xue, Liang & Rui, Zhenhua & Zhao, Ruicheng & Wang, Jingru, 2022. "Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection," Applied Energy, Elsevier, vol. 322(C).
    3. Feng, Guanhong & Wang, Yu & Xu, Tianfu & Wang, Fugang & Shi, Yan, 2021. "Multiphase flow modeling and energy extraction performance for supercritical geothermal systems," Renewable Energy, Elsevier, vol. 173(C), pages 442-454.
    4. Alsaleh, Mohd & Yang, Zhengyong & Chen, Tinggui & Wang, Xiaohui & Abdul-Rahim, Abdul Samad & Mahmood, Haider, 2023. "Moving toward environmental sustainability: Assessing the influence of geothermal power on carbon dioxide emissions," Renewable Energy, Elsevier, vol. 202(C), pages 880-893.
    5. Yu, Guojun & Li, Huyu & Liu, Cong & Cheng, Wan & Xu, Huijin, 2023. "Thermal and hydraulic characteristics of a new proposed flyover-crossing fracture configuration for the enhanced geothermal system," Renewable Energy, Elsevier, vol. 211(C), pages 859-873.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    2. Norouzi, Amir Mohammad & Pouranian, Fatemeh & Rabbani, Arash & Fowler, Neil & Gluyas, Jon & Niasar, Vahid & Ezekiel, Justin & Babaei, Masoud, 2023. "CO2-plume geothermal: Power net generation from 3D fluvial aquifers," Applied Energy, Elsevier, vol. 332(C).
    3. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    4. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    5. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    6. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.
    7. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    8. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    9. Maciej Ławryńczuk, 2018. "Towards Reduced-Order Models of Solid Oxide Fuel Cell," Complexity, Hindawi, vol. 2018, pages 1-18, July.
    10. Liu, Zhaoyi & Pan, Zhejun & Li, Shibin & Zhang, Ligang & Wang, Fengshan & Han, Lingling & Zhang, Jun & Ma, Yuanyuan & Li, Hao & Li, Wei, 2022. "Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs," Energy, Elsevier, vol. 241(C).
    11. Liao, Jianxing & Xu, Bin & Mehmood, Faisal & Hu, Ke & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Numerical study of the long-term performance of EGS based on discrete fracture network with consideration of fracture deformation," Renewable Energy, Elsevier, vol. 216(C).
    12. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    13. Xufeng Yan & Kangsheng Xue & Xiaobo Liu & Xiaolou Chi, 2023. "A Novel Numerical Method for Geothermal Reservoirs Embedded with Fracture Networks and Parameter Optimization for Power Generation," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    14. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    15. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    16. Wang, Yang & Li, Tuo & Chen, Yun & Ma, Guowei, 2019. "Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks," Energy, Elsevier, vol. 173(C), pages 92-108.
    17. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    18. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    19. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    20. Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.