Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114256
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
- Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
- Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
- Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
- Zheng, X. & Wang, R.Z. & Ge, T.S. & Hu, L.M., 2015. "Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems," Energy, Elsevier, vol. 93(P1), pages 88-94.
- Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
- Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
- Vivekh, P. & Bui, D.T. & Wong, Y. & Kumja, M. & Chua, K.J., 2019. "Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification," Applied Energy, Elsevier, vol. 237(C), pages 733-750.
- Oh, Seung Jin & Ng, Kim Choon & Chun, Wongee & Chua, Kian Jon Ernest, 2017. "Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations," Energy, Elsevier, vol. 137(C), pages 441-448.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
- Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
- Liu, M.Z. & Chen, W.D. & Shao, Y.L. & Huang, Z.F. & Zeng, Z.Y. & Wan, Y.D. & Chua, K.J., 2024. "Experimental analysis and investigation of desiccant coated heat exchanger applications involving condensation and sorption mechanisms," Energy, Elsevier, vol. 305(C).
- Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
- Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
- Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
- Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
- Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
- Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
- Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
- Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
- Bivas Panigrahi & Yu Sheng Chen & Win Jet Luo & Hung Wei Wang, 2020. "Dehumidification Effect of Polymeric Superabsorbent SAP-LiCl Composite Desiccant-Coated Heat Exchanger with Different Cyclic Switching Time," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
- Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
- Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
- Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
- Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
- Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
- Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
- Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
- Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
- Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
- Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
- Vivekh, P. & Bui, D.T. & Wong, Y. & Kumja, M. & Chua, K.J., 2019. "Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification," Applied Energy, Elsevier, vol. 237(C), pages 733-750.
- Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
- Liu, M.Z. & Chen, W.D. & Shao, Y.L. & Huang, Z.F. & Zeng, Z.Y. & Wan, Y.D. & Chua, K.J., 2024. "Experimental analysis and investigation of desiccant coated heat exchanger applications involving condensation and sorption mechanisms," Energy, Elsevier, vol. 305(C).
- Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
- Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Chai, Shaowei & Chen, Erjian & Xie, Mingxi & Zhao, Yao & Dai, Yanjun, 2022. "Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger," Energy, Elsevier, vol. 259(C).
- Liu, Lin & Huang, Hongyu & Li, Jun & Bai, Yu & Wu, Rongjun & He, Zhaohong & Deng, Lisheng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2023. "Modeling comparison and theoretical study of mass transfer characteristics for desiccant coated air channel under isothermal dehumidification," Energy, Elsevier, vol. 274(C).
More about this item
Keywords
Experiments; Desiccant coated heat exchangers; Air-conditioning; Sorption; Composite polymer; Dehumidification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319439. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.