IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318720.html
   My bibliography  Save this article

New insights on water-gas flow and hydrate decomposition behaviors in natural gas hydrates deposits with various saturations

Author

Listed:
  • Chen, Bingbing
  • Sun, Huiru
  • Zheng, Junjie
  • Yang, Mingjun

Abstract

The efficient and safe exploitation of natural gas hydrates (NGHs) has been a worldwide hot topic. Water migration is a fundamental process during NGHs production due to large amount of water produced from hydrate decomposition and in-situ seawater in seabed. Water flow erosion, a continuous water flow process to decompose hydrates, is a novel production strategy proposed to enhance hydrate decomposition by introducing chemical potential difference. In order to understand the water-gas flow characteristics in hydrate-bearing sediment and evaluate the influence of water flow erosion on hydrate decomposition, we employed different fluid flows (single water phase and water-gas two-phase flow) and magnetic resonance imaging (MRI) to visualize the water-gas migration process and methane hydrate decomposition. Methane hydrate sediment samples were formed with various saturations and the saturation-permeability relation was matched with the grain-coating/pore-filling models. The results revealed that samples with lower hydrate saturation could benefit more from water flow erosion. The average hydrate decomposition rate for a lower-saturation sample (22.68% saturation) was around four times higher than that of a higher-saturation sample (38.27% saturation). The water phase flow in hydrate-bearing sediment was studied using heavy water (D2O) and found to be a continuous dilution process. In addition, the water-gas two-phase flow showed a two-stage evolution: separated two-phase flow followed by dispersed two-phase flow. Finally, the interaction mechanism between gas-water seepage process and hydrate decomposition was proposed. Overall, the water flow erosion strategy showed a great potential to be synergistically combined with typical production methods to enhance methane hydrate decomposition.

Suggested Citation

  • Chen, Bingbing & Sun, Huiru & Zheng, Junjie & Yang, Mingjun, 2020. "New insights on water-gas flow and hydrate decomposition behaviors in natural gas hydrates deposits with various saturations," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318720
    DOI: 10.1016/j.apenergy.2019.114185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Mingjun & Fu, Zhe & Jiang, Lanlan & Song, Yongchen, 2017. "Gas recovery from depressurized methane hydrate deposits with different water saturations," Applied Energy, Elsevier, vol. 187(C), pages 180-188.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Yin, Zhenyuan & Moridis, George & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium," Applied Energy, Elsevier, vol. 220(C), pages 681-704.
    4. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    5. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    6. Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
    7. Bo Li & Xiao-Sen Li & Gang Li & Jia-Lin Jia & Jing-Chun Feng, 2013. "Measurements of Water Permeability in Unconsolidated Porous Media with Methane Hydrate Formation," Energies, MDPI, vol. 6(7), pages 1-15, July.
    8. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    9. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    10. Wang, Bin & Fan, Zhen & Zhao, Jiafei & Lv, Xin & Pang, Weixin & Li, Qingping, 2018. "Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach," Applied Energy, Elsevier, vol. 229(C), pages 858-871.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    12. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    3. Cheng, Fanbao & Wu, Zhaoran & Sun, Xiang & Shen, Shi & Wu, Peng & Liu, Weiguo & Chen, Bingbing & Liu, Xuanji & Li, Yanghui, 2023. "Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization," Energy, Elsevier, vol. 264(C).
    4. Liang, Wei & Wang, Jianguo & Li, Peibo, 2022. "Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model," Applied Energy, Elsevier, vol. 322(C).
    5. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    6. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    7. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    8. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    9. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    2. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    3. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    4. Sun, Huiru & Chen, Bingbing & Zhao, Guojun & Zhao, Yuechao & Yang, Mingjun & Song, Yongchen, 2020. "The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production," Applied Energy, Elsevier, vol. 276(C).
    5. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    6. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    7. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    8. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    9. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    10. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    11. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    12. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    13. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    14. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    15. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    16. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    17. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    18. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    19. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    20. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.