IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919304830.html
   My bibliography  Save this article

Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings

Author

Listed:
  • Kim, Moon Keun
  • Baldini, Luca
  • Leibundgut, Hansjürg
  • Wurzbacher, Jan Andre

Abstract

This study examines the moisture performance of a carbon dioxide (CO2) adsorption device and its utilization as a novel ventilation strategy in buildings. The device adsorbs CO2 and a small amount of moisture in the CO2 capture process. To activate a CO2 capture device for air recirculation in a building or connect it to an air handling unit to minimize the ventilation rate, the air needs to be controlled to have a steady-state humidity ratio below 12 g/kg, which is the maximum humidity ratio allowed in a room according to international standards. This study exhibits the moisture performance of an implemented CO2 capture device in the operation of an air ventilation system and its ability to recirculate indoor air via experimentation and numerical modeling for saving energy in buildings. Moreover, this research also evaluates the humidity performance using the strategy of connecting the CO2 capture device with an air handling unit and recirculating the air in the breathing zone based on an occupancy diversity factor. Based on these results, the study indicates that the air recirculation achieved by either using the CO2 capturing unit itself or connecting it to an air handling unit reduces not only the thermal energy load but also the energy load of dehumidifying the air in buildings. This work newly introduces the humidity performance of a CO2 capture device for air ventilation in buildings, and the novel ventilation paradigm can adjust the supply outdoor airflow rates depending on the surrounding environment and occupant behavior.

Suggested Citation

  • Kim, Moon Keun & Baldini, Luca & Leibundgut, Hansjürg & Wurzbacher, Jan Andre, 2020. "Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919304830
    DOI: 10.1016/j.apenergy.2019.03.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919304830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    2. Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
    3. Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    3. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    2. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    3. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    4. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    5. Hu, Hangtian & Fang, Mengxiang & Liu, Fei & Wang, Tao & Xia, Zhixiang & Zhang, Wei & Ge, Chunliang & Yuan, Jingjuan, 2022. "Novel alkanolamine-based biphasic solvent for CO2 capture with low energy consumption and phase change mechanism analysis," Applied Energy, Elsevier, vol. 324(C).
    6. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    7. Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
    8. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    9. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    10. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    11. Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
    12. Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
    13. Fatemeh Fashi & Ahad Ghaemi & Peyman Moradi, 2019. "Piperazine‐modified activated alumina as a novel promising candidate for CO2 capture: experimental and modeling," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 37-51, February.
    14. Xu, Chenhuan & Zhang, Yongmin & Yang, Tianlei & Jia, Xiaohao & Qiu, Feng & Liu, Cenfan & Jiang, Shuai, 2023. "Adsorption mechanisms and regeneration heat analysis of a solid amine sorbent during CO2 capture in wet flue gas," Energy, Elsevier, vol. 284(C).
    15. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
    16. Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
    17. Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
    18. Wang, Rujie & Liu, Shanshan & Li, Qiangwei & Zhang, Shihan & Wang, Lidong & An, Shanlong, 2021. "CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine," Energy, Elsevier, vol. 215(PB).
    19. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    20. Ding, Jing & Yu, Chao & Lu, Jianfeng & Wei, Xiaolan & Wang, Weilong & Pan, Gechuanqi, 2020. "Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919304830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.