IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic70.html
   My bibliography  Save this article

A micro-market module design for university demand-side management using self-crossover genetic algorithms

Author

Listed:
  • Xu, Fangyuan
  • Wu, Wanli
  • Zhao, Fei
  • Zhou, Ya
  • Wang, Yongjian
  • Wu, Runji
  • Zhang, Tao
  • Wen, Yongchen
  • Fan, Yiliang
  • Jiang, Shengli

Abstract

Demand Side Management (DSM) is an effective measure in load configuration for microgrid power cost control and power system operation. In most extant studies, DSM in microgrid only consider directly controllable devices for load modification. The load triggered by non-controllable devices with sub-decision-makers are regarded as unchangeable load and generally not considered in DSM. A critical reason for unchangeable load is that the sub-decision makers in these microgrids may not sense and react to external dynamic electricity prices. However, these non-changeable loads in some microgrids contribute significantly to the overall power consumption of the system. Thus, a new demand side management scheme is required for these special microgrids so that the load triggered by these sub-decision makers can also response to external dynamic electricity prices. Based on a case study of a university campus, this study proposes a micro-market module to facilitate the participative behaviours of sub-decision makers in a microgrid with extra financial incentives. A university microgrid DSM optimization model is formulated to optimize the total system cost, the control of the microgrid controllable load, the behaviour of sub-decision makers and the micro-market operations are modelled. A new optimization algorithm, the self-crossover genetic algorithm, is proposed. Empirical data from a university is used to conduct a numerical study to test the proposed module and algorithm. The results show that DSM with the micro-market module can reduce the overall electricity cost of the system, and the proposed self-crossover genetic algorithm out-performs traditional optimization algorithms for the proposed model.

Suggested Citation

  • Xu, Fangyuan & Wu, Wanli & Zhao, Fei & Zhou, Ya & Wang, Yongjian & Wu, Runji & Zhang, Tao & Wen, Yongchen & Fan, Yiliang & Jiang, Shengli, 2019. "A micro-market module design for university demand-side management using self-crossover genetic algorithms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:70
    DOI: 10.1016/j.apenergy.2019.113456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qadrdan, Meysam & Cheng, Meng & Wu, Jianzhong & Jenkins, Nick, 2017. "Benefits of demand-side response in combined gas and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 360-369.
    2. Mehra, Varun & Amatya, Reja & Ram, Rajeev J., 2018. "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, Elsevier, vol. 163(C), pages 74-87.
    3. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    4. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    5. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    6. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    7. Gomez-Herrera, Juan A. & Anjos, Miguel F., 2018. "Optimal collaborative demand-response planner for smart residential buildings," Energy, Elsevier, vol. 161(C), pages 370-380.
    8. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    9. Perera, D. & Meegahapola, L. & Perera, S. & Ciufo, P., 2014. "Characterisation of flicker emission and propagation in distribution networks with bi-directional power flows," Renewable Energy, Elsevier, vol. 63(C), pages 172-180.
    10. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    11. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    12. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    13. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    14. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    15. Vuelvas, José & Ruiz, Fredy & Gruosso, Giambattista, 2018. "Limiting gaming opportunities on incentive-based demand response programs," Applied Energy, Elsevier, vol. 225(C), pages 668-681.
    16. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    17. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    18. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    19. Mirakhorli, Amin & Dong, Bing, 2018. "Model predictive control for building loads connected with a residential distribution grid," Applied Energy, Elsevier, vol. 230(C), pages 627-642.
    20. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    2. Alessandro Niccolai & Gaia Gianna Taje & Davide Mosca & Fabrizio Trombello & Emanuele Ogliari, 2022. "Industrial Demand-Side Management by Means of Differential Evolution Considering Energy Price and Labour Cost," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    3. Edrees Yahya Alhawsawi & Khaled Salhein & Mohamed A. Zohdy, 2024. "A Comprehensive Review of Existing and Pending University Campus Microgrids," Energies, MDPI, vol. 17(10), pages 1-29, May.
    4. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    5. Masoud Dashtdar & Aymen Flah & Seyed Mohammad Sadegh Hosseinimoghadam & Hossam Kotb & Elżbieta Jasińska & Radomir Gono & Zbigniew Leonowicz & Michał Jasiński, 2022. "Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony," Sustainability, MDPI, vol. 14(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Sebastian & Marjanovic, Ognjen & Parisio, Alessandra, 2019. "Generalised control-oriented modelling framework for multi-energy systems," Applied Energy, Elsevier, vol. 235(C), pages 320-331.
    2. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    3. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    4. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    5. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    6. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    7. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    8. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    13. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    14. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Ricardo Faia & Pedro Faria & Zita Vale & João Spinola, 2019. "Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House," Energies, MDPI, vol. 12(9), pages 1-18, April.
    16. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    17. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    19. Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
    20. Pedro Nel Ovalle & José Vuelvas & Arturo Fajardo & Carlos Adrián Correa-Flórez & Fredy Ruiz, 2021. "Optimal Portfolio Selection Methodology for a Demand Response Aggregator," Energies, MDPI, vol. 14(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.