IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp2262-2274.html
   My bibliography  Save this article

Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect

Author

Listed:
  • Gómez-Villarejo, Roberto
  • Martín, Elisa I.
  • Sánchez-Coronilla, Antonio
  • Aguilar, Teresa
  • Gallardo, Juan Jesús
  • Martínez-Merino, Paloma
  • Carrillo-Berdugo, Iván
  • Alcántara, Rodrigo
  • Fernández-Lorenzo, Concha
  • Navas, Javier

Abstract

Nanofluids are a promising alternative to the typical heat transfer fluid (HTF) used in concentrating solar power (CSP) plants, possibly improving their global efficiency and leading to the increase the use of renewable clean energy. This study analyses nanofluids based on a typical HTF used in CSP and Pt nanoparticles. Pt nanoparticles were synthesized and dispersed in the base fluid. Dodecylamine (DDA) was used as a phase transfer and as a surfactant. Also, 1-octadecanethiol (ODT) was added as a surfactant and pulsed ultrasonication was used to disperse the nanoparticles. As the base fluid, the eutectic mixture of diphenyl oxide (73.5%) and biphenyl (26.5%) was used. This fluid is typically used in CSP plants based on parabolic through collectors. The stability of the nanofluids was analysed according to the kind of surfactant and ultrasonication process. Furthermore, to analyse the efficiency of the nanofluids, several properties were measured, including density, dynamic viscosity, isobaric specific heat and thermal conductivity. We found an increase in thermal conductivity of up to 37%, and the heat transfer coefficient also improved by up to 20%. Molecular dynamics calculations were performed to determine how the inclusion of ODT affected the system. ODT competes with DDA to interact with the Pt, forming a lattice around the Pt. The base fluid molecules, and in particular the diphenyl oxide molecules, take advantage of this competition to move closer to the Pt. This movement of molecules as the temperature rise must be Brownian in nature and enhances the heat transfer processes, improving the thermal properties of the nanofluids with both ODT and DDA compared with those prepared only with DDA. Thus, nanofluids with ODT and DDA would appear to be of interest for use in CSP.

Suggested Citation

  • Gómez-Villarejo, Roberto & Martín, Elisa I. & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Carrillo-Berdugo, Iván & Alcántara, Rodrigo & Fernández-Lo, 2018. "Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect," Applied Energy, Elsevier, vol. 228(C), pages 2262-2274.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2262-2274
    DOI: 10.1016/j.apenergy.2018.07.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    2. Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.
    3. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    6. Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
    7. Aguilar, Teresa & Navas, Javier & Sánchez-Coronilla, Antonio & Martín, Elisa I. & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Gómez-Villarejo, Roberto & Piñero, José Carlos & Alcántara, Rodrigo &, 2018. "Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: A molecular dynamics and experimental analysis," Applied Energy, Elsevier, vol. 211(C), pages 677-688.
    8. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    9. An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
    10. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    11. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    12. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    13. Mohammed, H.A. & Al-aswadi, A.A. & Shuaib, N.H. & Saidur, R., 2011. "Convective heat transfer and fluid flow study over a step using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2921-2939, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    2. Weidong Shi & Fengyu Li & Qizhao Lin & Guofeng Fang & Liang Chen & Liang Zhang, 2020. "Effects of Nanoparticle Additives on Spray Characteristics of Liquid Jets in Gaseous Crossflow," Energies, MDPI, vol. 13(7), pages 1-23, April.
    3. Xiong, Yaxuan & Wang, Zhenyu & Wu, Yuting & Xu, Peng & Ding, Yulong & Chang, Chun & Ma, Chongfang, 2019. "Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants," Applied Energy, Elsevier, vol. 237(C), pages 171-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    2. Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
    3. Aguilar, Teresa & Navas, Javier & Sánchez-Coronilla, Antonio & Martín, Elisa I. & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Gómez-Villarejo, Roberto & Piñero, José Carlos & Alcántara, Rodrigo &, 2018. "Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: A molecular dynamics and experimental analysis," Applied Energy, Elsevier, vol. 211(C), pages 677-688.
    4. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    5. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
    8. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    9. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    10. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    11. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    12. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    14. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
    16. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    18. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    19. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    20. Sun, Honghang & Gong, Bo & Yao, Qiang, 2014. "A review of wind loads on heliostats and trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 206-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2262-2274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.