IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp772-783.html
   My bibliography  Save this article

Design and characterization of hybrid III–V concentrator photovoltaic–thermoelectric receivers under primary and secondary optical elements

Author

Listed:
  • Sweet, T.K.N.
  • Rolley, M.H.
  • Li, W.
  • Paul, M.C.
  • Johnson, A.
  • Davies, J.I.
  • Tuley, R.
  • Simpson, K.
  • Almonacid, F.M.
  • Fernández, E.F.
  • Knox, A.R.

Abstract

Lattice-matched monolithic triple-junction Concentrator Photovoltaic cells (InGa(0.495)P/GaIn(0.012)As/Ge) were electrically and thermally interfaced to two Thermoelectric Peltier module designs. An electrical and thermal model of the hybrid receivers was modelled in COMSOL Multiphysics software v5.3 to optimize cell cooling whilst increasing photon energy conversion efficiency. The receivers were measured for current–voltage characteristics with the cell only (with sylguard encapsulant), under single secondary optical element at x2.5 optical concentration, and under Fresnel lens primary optical element concentration between x313 and x480. Measurements were taken in solar simulators at Cardiff and Jaén Universities, and on-sun with dual-axis tracking at Jaén University. The hybrid receivers were electrically, thermally and theoretically investigated. The electrical performance data for the cells under variable irradiance and cell temperature conditions were measured using the integrated thermoelectric module as both a temperature sensor and as a solid-state heat pump. The performance of six hybrid devices were evaluated within two 3-receiver strings under primary optical concentration with measured acceptance angles of 1.00° and 0.89°, similar to commercially sourced Concentrator Photovoltaic modules. A six-parameter one-diode equivalent electrical model was developed for the multi-junction cells under both primary and secondary optical concentration. This was applied to extract six model parameters with the experimental current–voltage curves of type A receiver at 1, 3 and 500 concentration ratios. Standard test conditions (1000 W/m2, 25 °C and Air Mass 1.5 Global spectrum) were assumed based on trust-region-reflective least squares algorithm in MATLAB. The model fitted the experimental current–voltage curves satisfactorily with a mean error of 4.44%. The combined primary and secondary optical intensity gain coefficient is as high as 0.92, in comparison with 0.50–0.86 for crossed compound parabolic concentrators. The determined values of diode reverse saturation current, combined series resistance and shunt resistance were similar to those of monocrystalline PV cell/modules in our previous publications. The model may be applicable to performance prediction of multi-junction CPV cells in the future.

Suggested Citation

  • Sweet, T.K.N. & Rolley, M.H. & Li, W. & Paul, M.C. & Johnson, A. & Davies, J.I. & Tuley, R. & Simpson, K. & Almonacid, F.M. & Fernández, E.F. & Knox, A.R., 2018. "Design and characterization of hybrid III–V concentrator photovoltaic–thermoelectric receivers under primary and secondary optical elements," Applied Energy, Elsevier, vol. 226(C), pages 772-783.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:772-783
    DOI: 10.1016/j.apenergy.2018.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
    2. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    2. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    3. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    4. Sato, Daisuke & Yamagata, Yuki & Hirata, Kenji & Yamada, Noboru, 2020. "Mathematical power-generation model of a four-terminal partial concentrator photovoltaic module for optimal sun-tracking strategy," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    2. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    3. Rejeb, Oussama & Shittu, Samson & Ghenai, Chaouki & Li, Guiqiang & Zhao, Xudong & Bettayeb, Maamar, 2020. "Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system," Renewable Energy, Elsevier, vol. 152(C), pages 1342-1353.
    4. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    5. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    6. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    7. Su, Shanhe & Liu, Tie & Wang, Junyi & Chen, Jincan, 2014. "Evaluation of temperature-dependent thermoelectric performances based on PbTe1−yIy and PbTe: Na/Ag2Te materials," Energy, Elsevier, vol. 70(C), pages 79-85.
    8. Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
    9. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.
    10. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    11. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    12. Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
    13. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    14. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2019. "Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect," Renewable Energy, Elsevier, vol. 130(C), pages 930-942.
    15. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    16. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    17. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Verma, Vishal & Kane, Aarti & Singh, Bhim, 2016. "Complementary performance enhancement of PV energy system through thermoelectric generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1017-1026.
    19. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    20. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:772-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.