IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp286-295.html
   My bibliography  Save this article

Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer

Author

Listed:
  • Li, Mingyu
  • He, Xiaomin
  • Zhao, Yuling
  • Jin, Yi
  • Yao, Kanghong
  • Ge, Zhenghao

Abstract

A novel hybrid-atomizer, combining the spray characteristics of pressure-swirl, airblast and fan atomizers, was designed and adopted for cavity fueling in a trapped vortex combustor (TVC). Furthermore, comparison experiments were conducted under atmospheric pressure to investigate the combustion characteristics of the combustor fueled using the novel hybrid atomizer and a simplex pressure-swirl atomizer. The discrepancies were directly explored in terms of ignition, lean blowout (LBO) limit, and combustion efficiency. The results indicate that the novel hybrid atomizer achieves significant advantages in terms of the combustion characteristics when compared to the simplex pressure-swirl atomizer. The outer-cavity ignition FAR achieved by the novel hybrid atomizer is 50% lower than pressure-swirl atomizer at Mach 0.25 and 0.29, with an inlet temperature of 373 K. In addition, the LBO limits acquired by the novel hybrid atomizer are lower than those of the pressure-swirl atomizer within the full range of operating conditions. Furthermore, a higher combustion efficiency is achieved by the novel hybrid atomizer compared to the pressure-swirl atomizer under most operating regimes.

Suggested Citation

  • Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Yao, Kanghong & Ge, Zhenghao, 2018. "Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer," Applied Energy, Elsevier, vol. 216(C), pages 286-295.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:286-295
    DOI: 10.1016/j.apenergy.2018.02.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    2. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    3. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
    4. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    5. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    6. Zhang, R.C. & Fan, W.J. & Xing, F. & Song, S.W. & Shi, Q. & Tian, G.H. & Tan, W.L., 2015. "Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines," Energy, Elsevier, vol. 93(P2), pages 1535-1547.
    7. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2011. "Distributed swirl combustion for gas turbine application," Applied Energy, Elsevier, vol. 88(12), pages 4898-4907.
    8. Jin, Yi & Li, Yefang & He, Xiaomin & Zhang, Jingyu & Jiang, Bo & Wu, Zejun & Song, Yaoyu, 2014. "Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor," Applied Energy, Elsevier, vol. 134(C), pages 257-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yakun & He, Xiaomin & Zhang, Huangwei & Zhu, Zhixin & Zhu, Huanyu, 2022. "Flame stability optimization of cavity primary air-jet form in an augmentor," Energy, Elsevier, vol. 239(PA).
    2. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    3. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    4. Sheng, Haoqiang & Ji, Yuan & Huang, Xiaobin & Zhao, Zhengchuang & Hu, Wenbin & Chen, Junming & Liu, Hong, 2022. "A free radical relay combustion approach to scramjet ignition at a low Mach number," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Ge, Zhenghao & Sun, Yuan, 2017. "Dome structure effects on combustion performance of a trapped vortex combustor," Applied Energy, Elsevier, vol. 208(C), pages 72-82.
    2. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    3. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    4. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
    5. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    6. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    7. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    8. Li, Mingyu & Wang, Qian & He, Xiaomin & Xiao, Jiankun & Ma, Heng, 2022. "Effects of fuel injection on the combustion and emission performance of a trapped vortex combustor," Energy, Elsevier, vol. 252(C).
    9. Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
    10. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    11. Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
    12. Huang, Yakun & He, Xiaomin & Zhang, Huangwei & Zhu, Zhixin & Zhu, Huanyu, 2022. "Flame stability optimization of cavity primary air-jet form in an augmentor," Energy, Elsevier, vol. 239(PA).
    13. Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
    14. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    15. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    16. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    17. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Velocity and turbulence effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 125(C), pages 1-9.
    18. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
    19. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Yan, W.H. & Hao, F. & Yin, C.M., 2018. "Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines," Energy, Elsevier, vol. 165(PA), pages 979-996.
    20. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:286-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.