IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v20y1985i4p253-285.html
   My bibliography  Save this article

Multi-vane expanders: Vane dynamics and friction losses

Author

Listed:
  • Badr, O.
  • Probert, S. D.
  • O'Callaghan, P.

Abstract

Mechanical friction and viscous drag represent major causes of power loss in multi-vane expanders. So a mathematical model has been developed to describe these loss phenomena. The constructed dynamic model was employed to investigate the loss of contact between the vanes and the stator-cylinder, which results in significant internal leakage losses. Two existing designs of multi-vane expander were considered in detail when using R-113 as the working fluid. The composed computer sub-routines were used to predict the effects of the different design parameters and operating conditions on the mechanical efficiencies of the expanders. The predictions obtained indicate that most of the frictional power loss in a multi-vane expander occurs due to the rubbing of the vanes against the stator-cylinder. Either the operating conditions for an existing expander can be controlled, or the optimal design parameters of a proposed expander for a particular application can be selected, in order to maximise the appropriate multi-vane expander's mechanical efficiency.

Suggested Citation

  • Badr, O. & Probert, S. D. & O'Callaghan, P., 1985. "Multi-vane expanders: Vane dynamics and friction losses," Applied Energy, Elsevier, vol. 20(4), pages 253-285.
  • Handle: RePEc:eee:appene:v:20:y:1985:i:4:p:253-285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(85)90018-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    2. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    3. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Bianchi, Giuseppe & Cipollone, Roberto, 2015. "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, Elsevier, vol. 142(C), pages 95-107.
    5. Vodicka, Vaclav & Novotny, Vaclav & Zeleny, Zbynek & Mascuch, Jakub & Kolovratnik, Michal, 2019. "Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander," Energy, Elsevier, vol. 189(C).
    6. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    7. Przemysław Błasiak & Piotr Kolasiński & Sindu Daniarta, 2023. "Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander," Energies, MDPI, vol. 16(6), pages 1-32, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:20:y:1985:i:4:p:253-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.