IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp829-842.html
   My bibliography  Save this article

Analysis of thermal energy performance in continuous annealing furnace

Author

Listed:
  • Hajaliakbari, Nasrollah
  • Hassanpour, Saied

Abstract

In this paper, the effects of several parameters such as the strip width and thickness, strip velocity and also heating power produced by radiant tubes and its distribution on the overall efficiency of continuous annealing furnace were analyzed. A mathematical model was developed to compute the total heat absorbed by the strip. Then, the overall efficiency was calculated. It was recognized that the strip with lower thickness and width may reduce the thermal performance of continuous annealing line. According to this study, both of strip velocity and heating power should be carefully adjusted in each heating schedule. One of the greatest benefits of this work rather than other previous studies is that both strip velocity and heat power are simultaneously considered such that the operator can make a better sense of setting parameters among tangible choices for a predetermined schedule. The results showed despite more heat provided at the entry of the furnace, the effect of adjusting the heating power at the exit of furnace on overall efficiency was remarkably more.

Suggested Citation

  • Hajaliakbari, Nasrollah & Hassanpour, Saied, 2017. "Analysis of thermal energy performance in continuous annealing furnace," Applied Energy, Elsevier, vol. 206(C), pages 829-842.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:829-842
    DOI: 10.1016/j.apenergy.2017.08.246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yukun & Tan, CK & Broughton, Jonathan & Roach, Paul Alun, 2016. "Development of a first-principles hybrid model for large-scale reheating furnaces," Applied Energy, Elsevier, vol. 173(C), pages 555-566.
    2. Ward, J. & Probert, S.D., 1975. "Reduction of energy losses associated with stock support structures in slab-reheating furnaces," Applied Energy, Elsevier, vol. 1(3), pages 223-236, July.
    3. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    4. Han, Sang Heon & Chang, Daejun & Huh, Cheol, 2011. "Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace," Energy, Elsevier, vol. 36(2), pages 1265-1272.
    5. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Demin & Lu, Biao & Dai, FangQin & Chen, Guang & Zhang, Xihe, 2018. "Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model," Energy, Elsevier, vol. 150(C), pages 1058-1069.
    2. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    5. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    6. Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
    7. Matino, Ismael & Colla, Valentina & Baragiola, Stefano, 2017. "Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability," Applied Energy, Elsevier, vol. 207(C), pages 543-552.
    8. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    9. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    10. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    11. Hosain, Md Lokman & Bel Fdhila, Rebei & Daneryd, Anders, 2016. "Heat transfer by liquid jets impinging on a hot flat surface," Applied Energy, Elsevier, vol. 164(C), pages 934-943.
    12. Bingxin Zeng & Lei Zhu, 2019. "Market Power and Technology Diffusion in an Energy-Intensive Sector Covered by an Emissions Trading Scheme," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    13. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    14. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    15. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    16. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    17. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    18. Pang, Rui-zhi & Deng, Zhong-qi & Chiu, Yung-ho, 2015. "Pareto improvement through a reallocation of carbon emission quotas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 419-430.
    19. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    20. Hu, Yukun & Wang, Jihong & Tan, CK & Sun, Chenggong & Liu, Hao, 2018. "Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor," Applied Energy, Elsevier, vol. 227(C), pages 168-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:829-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.