IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v186y2017ip2p189-196.html
   My bibliography  Save this article

Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy

Author

Listed:
  • Nizami, A.S.
  • Shahzad, K.
  • Rehan, M.
  • Ouda, O.K.M.
  • Khan, M.Z.
  • Ismail, I.M.I.
  • Almeelbi, T.
  • Basahi, J.M.
  • Demirbas, A.

Abstract

The city of Makkah in the Kingdom of Saudi Arabia (KSA) hosts millions of Muslim worshippers every year. As a consequence, the municipal solid waste (MSW) quantities become enormous. City landfills receive about 2.4 thousand tons of MSW every day, whilst during the months of fasting (Ramadan) and Pilgrimage (Hajj), these quantities become 3.1 and 4.6 thousand tons per day respectively. Currently, there is no waste-based biorefinery or waste-to-energy (WTE) facility existing in KSA to treat different fractions of MSW as a source of renewable energy production and a solution to landfill waste problems. Therefore, the waste-based biorefinery, if developed in Makkah city, including WTE technologies such as anaerobic digestion (AD), transesterification, pyrolysis and refuse derived fuel (RDF) can be able to treat around 87.8% of the total MSW. The remaining 12.2% of MSW fraction can be recycled. The waste-based biorefinery, along with the recycling approach, can generate savings of about 87.6 million Saudi Arabian Riyal (SAR) from carbon credits. Similarly, a total net revenue of 758 million SAR can be generated from landfill diversion (530.4 million SAR) and electricity generation (288.5 million SAR). Moreover, 1.95 million barrels of oil and 11.2 million MCF of natural gas can be saved with a cost savings of 485.5 million SAR. Collectively, the waste-based biorefinery and recycling can reduce the global warming potential (GWP) of 1.15 million Mt.CO2 eq.

Suggested Citation

  • Nizami, A.S. & Shahzad, K. & Rehan, M. & Ouda, O.K.M. & Khan, M.Z. & Ismail, I.M.I. & Almeelbi, T. & Basahi, J.M. & Demirbas, A., 2017. "Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy," Applied Energy, Elsevier, vol. 186(P2), pages 189-196.
  • Handle: RePEc:eee:appene:v:186:y:2017:i:p2:p:189-196
    DOI: 10.1016/j.apenergy.2016.04.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630616X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    2. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    3. Nizami, A.S. & Orozco, A. & Groom, E. & Dieterich, B. & Murphy, J.D., 2012. "How much gas can we get from grass?," Applied Energy, Elsevier, vol. 92(C), pages 783-790.
    4. Noor, Zainura Zainon & Yusuf, Rafiu Olasunkanmi & Abba, Ahmad Halilu & Abu Hassan, Mohd Ariffin & Mohd Din, Mohd Fadhil, 2013. "An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 378-384.
    5. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    2. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    3. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    4. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    5. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    6. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    7. Tsapekos, P. & Kougias, P.G. & Treu, L. & Campanaro, S. & Angelidaki, I., 2017. "Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production," Applied Energy, Elsevier, vol. 185(P1), pages 126-135.
    8. Ahmad Aiman Zulkifli & Mohd Zulkhairi Mohd Yusoff & Latifah Abd Manaf & Mohd Rafein Zakaria & Ahmad Muhaimin Roslan & Hidayah Ariffin & Yoshihito Shirai & Mohd Ali Hassan, 2019. "Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    9. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    10. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    11. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    12. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    13. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    14. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    15. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    16. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    17. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    19. Mulholland, Eamonn & O'Shea, Richard S.K. & Murphy, Jerry D. & Ó Gallachóir, Brian P., 2016. "Low carbon pathways for light goods vehicles in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 53-62.
    20. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:186:y:2017:i:p2:p:189-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.