IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p582-588.html
   My bibliography  Save this article

Performance enhancement of microbial fuel cell by applying transient-state regulation

Author

Listed:
  • Liang, Peng
  • Zhang, Changyong
  • Jiang, Yong
  • Bian, Yanhong
  • Zhang, Helan
  • Sun, Xueliang
  • Yang, Xufei
  • Zhang, Xiaoyuan
  • Huang, Xia

Abstract

A binder-free, pseudocapacitive anode was fabricated by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) nanoparticles on stainless steel fibre felt (SS). Microbial fuel cell (MFC) equipped with this novel anode yielded a maximum power density of 1045mWm−2, 20 times higher than that of a similar MFC with a bare SS anode (46mWm−2). Transient-state regulation (TSR) was implemented to further improve the MFC’s power generation. The optimal TSR duty cycle ranged from 67% to 95%, and the MFC’s power density increased with TSR frequency. A maximum power density output of 1238mWm−2 was achieved at the TSR duty cycle of 75% and the frequency of 1Hz, 18.4% greater than that obtained from the steady state operation. The TSR mode delivered better MFC performance especially when the external resistance was small. Long-term operation tests revealed that the current density and power density yielded in the TSR mode were on average 15.0% and 32.7% greater than those in the steady state mode, respectively. The TSR mode was believed to reduce the internal resistance of the MFC while enhance substrate mass transfer and electron transfer within the anode matrix, thereby improving the MFC performance.

Suggested Citation

  • Liang, Peng & Zhang, Changyong & Jiang, Yong & Bian, Yanhong & Zhang, Helan & Sun, Xueliang & Yang, Xufei & Zhang, Xiaoyuan & Huang, Xia, 2017. "Performance enhancement of microbial fuel cell by applying transient-state regulation," Applied Energy, Elsevier, vol. 185(P1), pages 582-588.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:582-588
    DOI: 10.1016/j.apenergy.2016.10.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631580X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaojing & Wang, Xin & Zhang, Yueyong & Ding, Ning & Zhou, Qixing, 2014. "Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 123(C), pages 13-18.
    2. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    2. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    3. Wang, Yuyang & Wen, Qing & Chen, Ye & Zheng, Hongtao & Wang, Shuang, 2020. "Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD," Energy, Elsevier, vol. 202(C).
    4. Wang, Yuyang & Wen, Qing & Chen, Ye & Li, Wei, 2020. "Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells," Energy, Elsevier, vol. 204(C).
    5. Wang, Yuyang & Chen, Ye & Wen, Qing & Zheng, Hongtao & Xu, Haitao & Qi, Lijuan, 2019. "Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes," Energy, Elsevier, vol. 189(C).
    6. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    7. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    8. Wang, Yuyang & Zhu, Lin & An, Lijuan, 2020. "Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes," Renewable Energy, Elsevier, vol. 162(C), pages 2220-2226.
    9. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    2. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    3. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    5. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    6. N. Evelin Paucar & Chikashi Sato, 2022. "Coupling Microbial Fuel Cell and Hydroponic System for Electricity Generation, Organic Removal, and Nutrient Recovery via Plant Production from Wastewater," Energies, MDPI, vol. 15(23), pages 1-19, December.
    7. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    8. Hani Alshahrani & Noman Islam & Darakhshan Syed & Adel Sulaiman & Mana Saleh Al Reshan & Khairan Rajab & Asadullah Shaikh & Jaweed Shuja-Uddin & Aadar Soomro, 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues," Energies, MDPI, vol. 16(3), pages 1-24, February.
    9. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    10. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    11. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    12. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    14. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Park, Jae-Do & Roane, Timberley M. & Ren, Zhiyong Jason & Alaraj, Muhannad, 2017. "Dynamic modeling of a microbial fuel cell considering anodic electron flow and electrical charge storage," Applied Energy, Elsevier, vol. 193(C), pages 507-514.
    16. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.
    17. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    18. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    19. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    20. Gajda, Iwona & Greenman, John & Santoro, Carlo & Serov, Alexey & Melhuish, Chris & Atanassov, Plamen & Ieropoulos, Ioannis A., 2018. "Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode," Energy, Elsevier, vol. 144(C), pages 1073-1079.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:582-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.