IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp482-490.html
   My bibliography  Save this article

Formation of cyclopentane - methane hydrates in brine systems and characteristics of dissolved ions

Author

Listed:
  • Lv, Qiu-Nan
  • Li, Xiao-Sen
  • Chen, Zhao-Yang

Abstract

Based on the hot brine in situ seafloor prepared for marine NGHs exploitation, the formation of hydrates and the characteristics of dissolved ions were investigated for the cyclopentane (CP)-methane-NaCl solution (3.5%) system. Both the gas consumption and the solution salinity influenced by two factors – the flow rate of gas (Qg) and the mass fraction of CP (MCP) -were discussed. On one hand, the gas consumption went up at a lower MCP (3.950wt%) while dropped down at a higher MCP (8.340 or 18.775wt%) with the increase of Qg. Nevertheless, higher mass fraction of CP behaved more favorable for the gas consumption. On the other hand, there would be a similar trend that the salinity of remaining liquid increased firstly and then decreased with the reaction time at any fixed Qg and MCP, which might be attributed to the adsorption of Na+ and Cl− on the surface of hydrate. Furthermore, PXRD analysis of the hydrate was conducted to confirm this explanation. And it was confirmed that the ion of Na+ or Cl− did not play any role in the construction of hydrate cages. Meanwhile, CP was enclosed in large cavities (51264) while CH4 was mainly enclosed in the small cavities (512).

Suggested Citation

  • Lv, Qiu-Nan & Li, Xiao-Sen & Chen, Zhao-Yang, 2016. "Formation of cyclopentane - methane hydrates in brine systems and characteristics of dissolved ions," Applied Energy, Elsevier, vol. 184(C), pages 482-490.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:482-490
    DOI: 10.1016/j.apenergy.2016.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631474X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
    2. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.
    3. Judith M. Schicks & Erik Spangenberg & Ronny Giese & Bernd Steinhauer & Jens Klump & Manja Luzi, 2011. "New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments," Energies, MDPI, vol. 4(1), pages 1-22, January.
    4. Babu, Ponnivalavan & Ho, Chie Yin & Kumar, Rajnish & Linga, Praveen, 2014. "Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture," Energy, Elsevier, vol. 70(C), pages 664-673.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jing & Lv, Tao & Zhang, Yu & von Solms, Nicolas & Xu, Chun-Gang & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Studies on temperature characteristics and initial formation interface during cyclopentane-methane hydrate formation in large-scale equipment with bubbling," Applied Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    2. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    3. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    4. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    6. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    7. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    8. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    9. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    10. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    11. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    12. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    13. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    14. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    15. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    17. Ludovic Nicolas Legoix & Livio Ruffine & Jean-Pierre Donval & Matthias Haeckel, 2017. "Phase Equilibria of the CH 4 -CO 2 Binary and the CH 4 -CO 2 -H 2 O Ternary Mixtures in the Presence of a CO 2 -Rich Liquid Phase," Energies, MDPI, vol. 10(12), pages 1-11, December.
    18. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    19. Xiang-Ru Chen & Xiao-Sen Li & Zhao-Yang Chen & Yu Zhang & Ke-Feng Yan & Qiu-Nan Lv, 2015. "Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media," Energies, MDPI, vol. 8(2), pages 1-14, February.
    20. Li, Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Xiao, Chang-Wen & Liu, Jian-Wu, 2023. "Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:482-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.