IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp304-313.html
   My bibliography  Save this article

Data-driven real-time power dispatch for maximizing variable renewable generation

Author

Listed:
  • Li, Zhigang
  • Qiu, Feng
  • Wang, Jianhui

Abstract

Traditional power dispatch methods have difficulties in accommodating large-scale variable renewable generation (VRG) and have resulted in unnecessary VRG spillage in the practical industry. The recent dispatchable-interval-based methods have the potential to reduce VRG curtailment, but the dispatchable intervals are not allocated effectively due to the lack of exploiting historical dispatch records of VRG units. To bridge this gap, this paper proposes a novel data-driven real-time dispatch approach to maximize VRG utilization by using do-not-exceed (DNE) limits. This approach defines the maximum generation output ranges that the system can accommodate without compromising reliability. The DNE limits of VRG units and operating base points of conventional units are co-optimized by hybrid stochastic and robust optimization, and the decision models are formulated as mixed-integer linear programs by the sample average approximation technique exploiting historical VRG data. A strategy for selecting historical data samples is also proposed to capture the VRG uncertainty more accurately under variant prediction output levels. Computational experiments show the effectiveness of the proposed methods.

Suggested Citation

  • Li, Zhigang & Qiu, Feng & Wang, Jianhui, 2016. "Data-driven real-time power dispatch for maximizing variable renewable generation," Applied Energy, Elsevier, vol. 170(C), pages 304-313.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:304-313
    DOI: 10.1016/j.apenergy.2016.02.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    2. MILLER, Andrew J. & WOLSEY, Laurence A., 2003. "Tight formulations for some simple mixed integer programs and convex objective integer programs," LIDAM Reprints CORE 1653, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    4. Liu, Heping & Erdem, Ergin & Shi, Jing, 2011. "Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed," Applied Energy, Elsevier, vol. 88(3), pages 724-732, March.
    5. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    2. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    3. Sachin Kahawala & Daswin De Silva & Seppo Sierla & Damminda Alahakoon & Rashmika Nawaratne & Evgeny Osipov & Andrew Jennings & Valeriy Vyatkin, 2021. "Robust Multi-Step Predictor for Electricity Markets with Real-Time Pricing," Energies, MDPI, vol. 14(14), pages 1-20, July.
    4. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    5. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    6. Erfan Mohagheghi & Aouss Gabash & Pu Li, 2017. "A Framework for Real-Time Optimal Power Flow under Wind Energy Penetration," Energies, MDPI, vol. 10(4), pages 1-28, April.
    7. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Frede Blaabjerg & Pu Li, 2020. "Real-Time Active-Reactive Optimal Power Flow with Flexible Operation of Battery Storage Systems," Energies, MDPI, vol. 13(7), pages 1-17, April.
    8. Yuan, Zhao & Wogrin, Sonja & Hesamzadeh, Mohammad Reza, 2017. "Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition," Applied Energy, Elsevier, vol. 205(C), pages 1419-1434.
    9. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    10. Li Dai & Dahai You & Xianggen Yin, 2020. "Data Driven Robust Energy and Reserve Dispatch Based on a Nonparametric Dirichlet Process Gaussian Mixture Model," Energies, MDPI, vol. 13(18), pages 1-18, September.
    11. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    12. Fang, Debin & Zhao, Chaoyang & Yu, Qian, 2018. "Government regulation of renewable energy generation and transmission in China’s electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 775-793.
    13. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Xue, Xizhen & Lin, Zhongwei & Fang, Fang, 2021. "Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps," Energy, Elsevier, vol. 237(C).
    14. Yang, Ting & Zhao, Yingjie & Pen, Haibo & Wang, Zhaoxia, 2018. "Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation," Applied Energy, Elsevier, vol. 231(C), pages 277-287.
    15. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    2. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    3. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    4. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    5. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    6. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    7. Yang, Linfeng & Zhang, Chen & Jian, Jinbao & Meng, Ke & Xu, Yan & Dong, Zhaoyang, 2017. "A novel projected two-binary-variable formulation for unit commitment in power systems," Applied Energy, Elsevier, vol. 187(C), pages 732-745.
    8. Geng, Zhaowei & Conejo, Antonio J. & Chen, Qixin & Xia, Qing & Kang, Chongqing, 2017. "Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production," Applied Energy, Elsevier, vol. 193(C), pages 540-549.
    9. Chen, Yue & Wei, Wei & Liu, Feng & Mei, Shengwei, 2016. "Distributionally robust hydro-thermal-wind economic dispatch," Applied Energy, Elsevier, vol. 173(C), pages 511-519.
    10. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    11. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    12. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    13. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    14. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    15. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    16. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    17. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    18. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    19. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    20. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:304-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.