IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v169y2016icp866-873.html
   My bibliography  Save this article

Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain

Author

Listed:
  • Miró, Laia
  • Brueckner, Sarah
  • McKenna, Russell
  • Cabeza, Luisa F.

Abstract

In the current European energy context, the use of recovered industrial waste heat provides an attractive opportunity to substitute primary energy consumption by a low-emission and low-cost energy carrier. In the case of industrial waste heat, this potential is currently not only largely untapped, but also unaccounted for. In order to achieve a widespread use of recovered industrial waste heat, assessments with a large scope and high spatial resolution are needed. Three methods published in the period 2002–2010 have been found in the literature, which are potentially transferable to other regions. These three methods are based on either the energy consumption of each manufacturing sector or the individual site CO2 emissions. The scope of this analysis is, first, to investigate in how far a transfer of the figures to different countries or regions is sensible in comparison to former studies in the literature. In the process, some uncertainties when transferring methods were identified (different definitions of industry, different standard industrial activities classifications or no standard at all, etc.). The second goal is, once the methodology is accepted, to apply it to a case study, in this case the industrial sector in Spain and two of its counties (Catalonia and the Basque Country) for the years 2001, 2009, 2010 and 2013. In this period, and based on the different approaches employed, the Spanish annual industrial waste heat potential ranges from 54.3 to 151.1 PJ, Catalonia from 8.6 to 29.7 PJ, and from 7.2 to 11.9 PJ for the Basque Country. The methods are considered highly transferable but uncertainties inevitably arise in the case that the source and destination industrial sectors are very different.

Suggested Citation

  • Miró, Laia & Brueckner, Sarah & McKenna, Russell & Cabeza, Luisa F., 2016. "Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain," Applied Energy, Elsevier, vol. 169(C), pages 866-873.
  • Handle: RePEc:eee:appene:v:169:y:2016:i:c:p:866-873
    DOI: 10.1016/j.apenergy.2016.02.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broniszewski, Mariusz & Werle, Sebastian & Sobek, Szymon & Zaik, Karolina, 2022. "Technical and economic assessment of ORC and cogeneration including a combined variant – A case study for the Polish automotive fastener industry company," Energy, Elsevier, vol. 242(C).
    2. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    3. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    4. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    5. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    6. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    7. Weinand, Jann & McKenna, Russell & Karner, Katharina & Braun, Lorenz & Herbes, Carsten, 2018. "Assessing the potential contribution of excess heat from biogas plants towards decarbonising German residential heating," Working Paper Series in Production and Energy 31, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    8. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini, 2019. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," Papers 1912.06558, arXiv.org.
    9. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini & Daniela Leonte, 2020. "The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper," Energies, MDPI, vol. 13(8), pages 1-19, April.
    10. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    11. Wheatcroft, Edward & Wynn, Henry P. & Lygnerud, Kristina & Bonvicini, Giorgio & Bonvicini, Giorgio & Lenote, Daniela, 2020. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," LSE Research Online Documents on Economics 104136, London School of Economics and Political Science, LSE Library.
    12. Möhren, S. & Meyer, J. & Krause, H. & Saars, L., 2021. "A multiperiod approach for waste heat and renewable energy integration of industrial sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    14. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:169:y:2016:i:c:p:866-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.