IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v139y2015icp93-103.html
   My bibliography  Save this article

Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine

Author

Listed:
  • Salvi, B.L.
  • Subramanian, K.A.

Abstract

As flame kernel growth plays a major role in combustion of premixed-charge in spark ignition engines for higher energy efficiency and less emission, the experimental study was carried out on a single cylinder spark ignition research engine for measurement of flame kernel growth rate (FKGR) using spark plug fibre optics probe (VisioFlame sensor). The FKGR was measured on the engine at different power output with varied spark ignition timings and different engine speeds. The experimental results indicate that the FKGR was the highest with the maximum brake torque (MBT) spark timing and it decreases with increase in the engine speed. The FKGR at engine speed of 1000RPM was the highest of 1.81m/s with MBT timing (20°bTDC) as compared to 1.6m/s (15°bTDC), 1.67m/s (25°bTDC), and 1.61m/s (30°bTDC) with retarded and advanced timing. In addition to this, a phenomenological model was developed for calculation of FKGR. It was observed from the model that FKGR is function of equivalence ratio, engine speed, in-cylinder pressure and charge density. The experimental results and methodology emerged from this study would be useful for optimization of engine parameters using the FKGR and also further development of model for alternative fuels.

Suggested Citation

  • Salvi, B.L. & Subramanian, K.A., 2015. "Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine," Applied Energy, Elsevier, vol. 139(C), pages 93-103.
  • Handle: RePEc:eee:appene:v:139:y:2015:i:c:p:93-103
    DOI: 10.1016/j.apenergy.2014.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914011611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Asok K. & Zheng, Jianjun & Huang, Zuohua, 2011. "Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine," Applied Energy, Elsevier, vol. 88(7), pages 2324-2334, July.
    2. Zhang, H.G. & Han, X.J. & Yao, B.F. & Li, G.X., 2013. "Study on the effect of engine operation parameters on cyclic combustion variations and correlation coefficient between the pressure-related parameters of a CNG engine," Applied Energy, Elsevier, vol. 104(C), pages 992-1002.
    3. Knop, Vincent & Michel, Jean-Baptiste & Colin, Olivier, 2011. "On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines," Applied Energy, Elsevier, vol. 88(12), pages 4968-4979.
    4. Kodah, Z. H. & Soliman, H. S. & Abu Qudais, M. & Jahmany, Z. A., 2000. "Combustion in a spark-ignition engine," Applied Energy, Elsevier, vol. 66(3), pages 237-250, July.
    5. Olesky, Laura Manofsky & Martz, Jason B. & Lavoie, George A. & Vavra, Jiri & Assanis, Dennis N. & Babajimopoulos, Aristotelis, 2013. "The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion," Applied Energy, Elsevier, vol. 105(C), pages 407-417.
    6. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    7. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.
    8. Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
    9. Saerens, B. & Vandersteen, J. & Persoons, T. & Swevers, J. & Diehl, M. & Van den Bulck, E., 2009. "Minimization of the fuel consumption of a gasoline engine using dynamic optimization," Applied Energy, Elsevier, vol. 86(9), pages 1582-1588, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
    2. Roberto Martinelli & Federico Ricci & Gabriele Discepoli & Luca Petrucci & Stefano Papi & Carlo N. Grimaldi, 2023. "Thermal Energy and Luminosity Characterization of an Advanced Ignition System Using a Non-Intrusive Methodology in an Optically Accessible Calorimeter," Energies, MDPI, vol. 16(1), pages 1-22, January.
    3. Hwang, Joonsik & Kim, Wooyeong & Bae, Choongsik & Choe, Wonho & Cha, Jeonghwa & Woo, Soohyung, 2017. "Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine," Applied Energy, Elsevier, vol. 205(C), pages 562-576.
    4. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    5. Xiaowei Zhao & Yuedong Sun & Zhendong Zhang & Congbo Yin, 2024. "Experimental Study of the Performance of Turbo-Charged Gasoline Direct-Injection Engine Based on Different Pre-Chamber Structures," Energies, MDPI, vol. 17(7), pages 1-21, April.
    6. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    7. Yang, Jingxun & Xie, Fangxi & Jiang, Beiping & Li, Xiaoping & Su, Yan & Zhang, Hao, 2024. "Influence of structure parameters of pre-chamber on lean combustion of active pre-chamber jet ignition engine," Energy, Elsevier, vol. 304(C).
    8. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
    9. Irimescu, Adrian & Merola, Simona Silvia & Valentino, Gerardo, 2016. "Application of an entrainment turbulent combustion model with validation based on the distribution of chemical species in an optical spark ignition engine," Applied Energy, Elsevier, vol. 162(C), pages 908-923.
    10. Xu, Zidan & Zhang, Yahui & Di, Huanyu & Shen, Tielong, 2019. "Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    2. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    3. Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
    4. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    5. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Song, Kang & Wang, Xinyan & Xie, Hui, 2018. "Trade-off on fuel economy, knock, and combustion stability for a stratified flame-ignited gasoline engine," Applied Energy, Elsevier, vol. 220(C), pages 437-446.
    8. Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
    9. Schröder, Lukas & Hillenbrand, Thomas & Brüggemann, Dieter, 2024. "Evaluation of the combustion process of directly injected methane in a rapid compression machine with a laser-based ignition system and an electrical ignition system," Energy, Elsevier, vol. 289(C).
    10. Bielaczyc, Piotr & Woodburn, Joseph & Szczotka, Andrzej, 2014. "An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations," Applied Energy, Elsevier, vol. 117(C), pages 134-141.
    11. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    12. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    13. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    14. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    15. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    16. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    17. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    18. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    19. Paúl Andrés Molina Campoverde, 2023. "Estimation of Fuel Consumption through PID Signals Using the Real Emissions Cycle in the City of Quito, Ecuador," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    20. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:139:y:2015:i:c:p:93-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.