IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp791-808.html
   My bibliography  Save this article

Optimal design for heat-integrated water-using and wastewater treatment networks

Author

Listed:
  • Ahmetović, Elvis
  • Ibrić, Nidret
  • Kravanja, Zdravko

Abstract

This work proposes a novel general superstructure and a simultaneous optimisation model for the designing of a heat-integrated water-using and wastewater treatment network (HIWTN) by combining a water-using network (WN), a wastewater treatment network (WTN), and a heat exchanger network (HEN). The proposed work is an extension of our previous studies that considered only heat-integrated water networks (HIWNs) or combined WN and HEN without WTN. The new proposed superstructure of this work combines water integration (water-usage, wastewater treatment, and recycling) and heat integration (direct and indirect heat exchanges) within an overall network. The simultaneous optimisation model of the proposed superstructure is formulated as a non-convex mixed integer non-linear programming (MINLP) problem for minimising the total annual network cost (TAC). This model enables appropriate trade-offs between freshwater usage, hot and cold utilities consumption, and capital cost of heat exchangers (HEs) and wastewater treatment units (TUs). Three literature examples are used to test the proposed model. The improved results of the first two examples are given whilst for the third modified example a novel network design is presented in order to include wastewater treatment.

Suggested Citation

  • Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko, 2014. "Optimal design for heat-integrated water-using and wastewater treatment networks," Applied Energy, Elsevier, vol. 135(C), pages 791-808.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:791-808
    DOI: 10.1016/j.apenergy.2014.04.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
    2. Martínez-Patiño, Jesús & Picón-Núñez, Martín & Serra, Luis M. & Verda, Vittorio, 2011. "Design of water and energy networks using temperature–concentration diagrams," Energy, Elsevier, vol. 36(6), pages 3888-3896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    2. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    3. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    4. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    5. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2016. "Simultaneous optimization of heat-integrated water allocation networks," Applied Energy, Elsevier, vol. 169(C), pages 395-407.
    6. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    7. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    8. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    9. Giuseppe Campo & Antonella Miggiano & Deborah Panepinto & Mariachiara Zanetti, 2023. "Enhancing the Energy Efficiency of Wastewater Treatment Plants through the Optimization of the Aeration Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    10. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    11. Mehmet Hayrullah Akyıldız & Seda Yön, 2023. "Experimental Investigation of Usability of Treatment Sud Ash with Road Filling Materials in Highways," Sustainability, MDPI, vol. 15(5), pages 1-9, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    2. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    3. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    4. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    5. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2019. "Optimal Design of Heat-Integrated Water Allocation Networks," Energies, MDPI, vol. 12(11), pages 1-31, June.
    6. Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
    7. Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
    8. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    9. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    10. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    11. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2016. "Simultaneous optimization of heat-integrated water allocation networks," Applied Energy, Elsevier, vol. 169(C), pages 395-407.
    12. Toffolo, Andrea & Lazzaretto, Andrea & von Spakovsky, Michael R., 2012. "On the nature of the heat transfer feasibility constraint in the optimal synthesis/design of complex energy systems," Energy, Elsevier, vol. 41(1), pages 236-243.
    13. Dong, Xuan & Zhang, Chijin & Peng, Xiaoyi & Chang, Chenglin & Liao, Zuwei & Yang, Yao & Sun, Jingyuan & Wang, Jingdai & Yang, Yongrong, 2022. "Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers," Energy, Elsevier, vol. 238(PC).
    14. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    15. Nidret Ibrić & Elvis Ahmetović & Andreja Nemet & Zdravko Kravanja & Ignacio E. Grossmann, 2022. "Synthesis of Heat-Integrated Water Networks Using a Modified Heat Exchanger Network Superstructure," Energies, MDPI, vol. 15(9), pages 1-23, April.
    16. Yang, Minbo & Feng, Xiao & Chu, Khim Hoong & Liu, Guilian, 2014. "Graphical method for identifying the optimal purification process of hydrogen systems," Energy, Elsevier, vol. 73(C), pages 829-837.
    17. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:791-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.