IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v500y2025ics0096300325001687.html
   My bibliography  Save this article

A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model

Author

Listed:
  • Xin, Qi
  • Gu, Xian-Ming
  • Liu, Li-Bin

Abstract

The solution of the time-fractional Black–Scholes (TFBS) equation often exhibits a weak singularity at initial time and possible non-physical oscillations in the computed solution due to the degeneracy of the BS differential operator. To address this issue, we combine a modified graded mesh and a piecewise uniform mesh for temporal and spatial discretizations, respectively. Then we use the fast approximation (rather than the direct approximation) of the L1 scheme for the Caputo derivative to establish an implicit difference method for the TFBS model. Our analysis shows the stability and convergence of the proposed scheme, as well as the α-nonrobust error bounds. Finally, numerical results are presented to show the effectiveness of the proposed method.

Suggested Citation

  • Xin, Qi & Gu, Xian-Ming & Liu, Li-Bin, 2025. "A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model," Applied Mathematics and Computation, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001687
    DOI: 10.1016/j.amc.2025.129441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325001687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    2. Grzegorz Krzy.zanowski & Marcin Magdziarz & {L}ukasz P{l}ociniczak, 2019. "A weighted finite difference method for subdiffusive Black Scholes Model," Papers 1907.00297, arXiv.org, revised Apr 2020.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Liu, Li-Bin & Xu, Lei & Zhang, Yong, 2023. "Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 87-101.
    5. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haq, Sirajul & Hussain, Manzoor, 2018. "Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 248-263.
    2. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    3. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Amin & J. F. Gómez-Aguilar, 2024. "An Efficient Numerical Scheme to Approach the Time Fractional Black–Scholes Model Using Orthogonal Gegenbauer Polynomials," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 211-224, July.
    4. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    6. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    7. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    8. Paula Morales-Bañuelos & Sebastian Elias Rodríguez Bojalil & Luis Alberto Quezada-Téllez & Guillermo Fernández-Anaya, 2025. "A General Conformable Black–Scholes Equation for Option Pricing," Mathematics, MDPI, vol. 13(10), pages 1-29, May.
    9. Yan, Ruifang & He, Ying & Zuo, Qian, 2021. "A difference method with parallel nature for solving time-space fractional Black-Schole model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    11. Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
    12. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    13. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    14. Zhang, H. & Liu, F. & Chen, S. & Anh, V. & Chen, J., 2018. "Fast numerical simulation of a new time-space fractional option pricing model governing European call option," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 186-198.
    15. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
    16. Ma, Pengcheng & Najafi, Alireza & Gomez-Aguilar, J.F., 2024. "Sub mixed fractional Brownian motion and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    18. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    19. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Aljethi, Reem Abdullah & Kılıçman, Adem, 2023. "Analysis of fractional differential equation and its application to realistic data," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.