A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2025.129441
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007.
"Fractional diffusion models of option prices in markets with jumps,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
- Alvaro Cartea & Diego del-Castillo-Negrete, 2006. "Fractional Diffusion Models of Option Prices in Markets with Jumps," Birkbeck Working Papers in Economics and Finance 0604, Birkbeck, Department of Economics, Mathematics & Statistics.
- Grzegorz Krzy.zanowski & Marcin Magdziarz & {L}ukasz P{l}ociniczak, 2019. "A weighted finite difference method for subdiffusive Black Scholes Model," Papers 1907.00297, arXiv.org, revised Apr 2020.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Liu, Li-Bin & Xu, Lei & Zhang, Yong, 2023. "Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 87-101.
- Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haq, Sirajul & Hussain, Manzoor, 2018. "Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 248-263.
- Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
- Y. Esmaeelzade Aghdam & H. Mesgarani & A. Amin & J. F. Gómez-Aguilar, 2024. "An Efficient Numerical Scheme to Approach the Time Fractional Black–Scholes Model Using Orthogonal Gegenbauer Polynomials," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 211-224, July.
- Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
- Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
- Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
- Paula Morales-Bañuelos & Sebastian Elias Rodríguez Bojalil & Luis Alberto Quezada-Téllez & Guillermo Fernández-Anaya, 2025. "A General Conformable Black–Scholes Equation for Option Pricing," Mathematics, MDPI, vol. 13(10), pages 1-29, May.
- Yan, Ruifang & He, Ying & Zuo, Qian, 2021. "A difference method with parallel nature for solving time-space fractional Black-Schole model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
- Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
- Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
- Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
- Zhang, H. & Liu, F. & Chen, S. & Anh, V. & Chen, J., 2018. "Fast numerical simulation of a new time-space fractional option pricing model governing European call option," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 186-198.
- Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
- Ma, Pengcheng & Najafi, Alireza & Gomez-Aguilar, J.F., 2024. "Sub mixed fractional Brownian motion and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
- Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
- Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Aljethi, Reem Abdullah & Kılıçman, Adem, 2023. "Analysis of fractional differential equation and its application to realistic data," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.