IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v491y2025ics0096300324006945.html
   My bibliography  Save this article

Numerical approximations and convergence analysis of piecewise diffusion Markov processes, with application to glioma cell migration

Author

Listed:
  • Buckwar, Evelyn
  • Meddah, Amira

Abstract

In this paper, we focus on numerical approximations of Piecewise Diffusion Markov Processes (PDifMPs), particularly when the explicit flow maps are unavailable. Our approach is based on the thinning method for modelling the jump mechanism and combines the Euler-Maruyama scheme to approximate the underlying flow dynamics. For the proposed approximation schemes, we study both the mean-square and weak convergence. Weak convergence of the algorithms is established by a martingale problem formulation. Moreover, we employ these results to simulate the migration patterns exhibited by moving glioma cells at the microscopic level. Further, we develop and implement a splitting method for this PDifMP model and employ both the Thinned Euler-Maruyama and the splitting scheme in our simulation example, allowing us to compare both methods.

Suggested Citation

  • Buckwar, Evelyn & Meddah, Amira, 2025. "Numerical approximations and convergence analysis of piecewise diffusion Markov processes, with application to glioma cell migration," Applied Mathematics and Computation, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006945
    DOI: 10.1016/j.amc.2024.129233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    2. Alexandre Bouchard-Côté & Sebastian J. Vollmer & Arnaud Doucet, 2018. "The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 855-867, April.
    3. Bierkens, Joris & Bouchard-Côté, Alexandre & Doucet, Arnaud & Duncan, Andrew B. & Fearnhead, Paul & Lienart, Thibaut & Roberts, Gareth & Vollmer, Sebastian J., 2018. "Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 148-154.
    4. Bertazzi, Andrea & Bierkens, Joris & Dobson, Paul, 2022. "Approximations of Piecewise Deterministic Markov Processes and their convergence properties," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 91-153.
    5. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    6. Peter Kritzer & Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2017. "Approximation methods for piecewise deterministic Markov processes and their costs," Papers 1712.09201, arXiv.org, revised Jan 2019.
    7. Peter Kritzer & Gunther Leobacher & Michaela Szölgyenyi & Stefan Thonhauser, 2019. "Approximation methods for piecewise deterministic Markov processes and their costs," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(4), pages 308-335, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.
    2. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    3. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
    4. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    5. Bertazzi, Andrea & Bierkens, Joris & Dobson, Paul, 2022. "Approximations of Piecewise Deterministic Markov Processes and their convergence properties," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 91-153.
    6. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    7. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    9. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    10. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
    11. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    12. Gao, Xiangyu & Liu, Yi & Wang, Yanxia & Yang, Hongfu & Yang, Maosong, 2021. "Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    14. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    15. Ivan Jericevich & Dharmesh Sing & Tim Gebbie, 2021. "CoinTossX: An open-source low-latency high-throughput matching engine," Papers 2102.10925, arXiv.org.
    16. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    17. Zhao, Jingjun & Yi, Yulian & Xu, Yang, 2021. "Strong convergence of explicit schemes for highly nonlinear stochastic differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    18. Huh, Woonghee Tim & Lee, Jaywon & Park, Heesang & Park, Kun Soo, 2019. "The potty parity problem: Towards gender equality at restrooms in business facilities," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    19. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    20. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.