IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v434y2022ics009630032200529x.html
   My bibliography  Save this article

Relaxed observer-based stabilization and dissipativity conditions of T-S fuzzy systems with nonhomogeneous Markov jumps via non-PDC scheme

Author

Listed:
  • Lee, Won Il
  • Park, Bum Yong
  • Kim, Sung Hyun

Abstract

This paper aims to design a robust observer-based dissipative controller for discrete-time Takagi–Sugeno (T-S) fuzzy systems with nonhomogeneous Markov jumps through a non-parallel distributed compensation (non-PDC) scheme. Based on a mode-dependent nonquadratic Lyapunov function, the final form of the stabilization conditions is expressed as linear matrix inequalities in a less conservative manner. To be specific, this paper proposes a decoupling technique that can address the inherent nonconvex terms by extracting them from the stabilization conditions, where all slack variables are set to be fuzzy-basis-dependent for less conservative performance. Furthermore, the proposed stabilization method adopts a one-step design strategy that simultaneously designs the fuzzy observer and control gains without any iteration procedures by employing a positive tuning parameter. In particular, the time-varying transition probabilities included in the stabilization conditions are effectively removed using a modified relaxation technique that can avoid excessive use of free weighting matrices. Finally, based on four examples, the validity of the proposed method is verified through comparison with other studies.

Suggested Citation

  • Lee, Won Il & Park, Bum Yong & Kim, Sung Hyun, 2022. "Relaxed observer-based stabilization and dissipativity conditions of T-S fuzzy systems with nonhomogeneous Markov jumps via non-PDC scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
  • Handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s009630032200529x
    DOI: 10.1016/j.amc.2022.127455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032200529X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Feng & Li, Min & Liu, Duyu, 2019. "Non-fragile H∞ control for Markovian jump fuzzy systems with time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1177-1191.
    2. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous H∞ observer-based control synthesis of nonhomogeneous Markovian jump systems with generalized incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    3. Wang, Yanqian & Chen, Fu & Zhuang, Guangming & Yang, Guang, 2020. "Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Gao, Meng & Zhang, Lihua & Qi, Wenhai & Cao, Jinde & Cheng, Jun & Kao, Yonggui & Wei, Yunliang & Yan, Xiaoyu, 2020. "SMC for semi-Markov jump T-S fuzzy systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    5. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    6. Xu, Tianshu & Xia, Jianwei & Wang, Sanxia & Lian, Yuxiao & Zhang, Huasheng, 2020. "Extended dissipativity-based non-fragile sampled-data control of fuzzy Markovian jump systems with incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanh Binh Nguyen & Hyoung-Kyu Song, 2022. "Further Results on Robust Output-Feedback Dissipative Control of Markovian Jump Fuzzy Systems with Model Uncertainties," Mathematics, MDPI, vol. 10(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Visakamoorthi, B. & Subramanian, K. & Muthukumar, P., 2022. "Hidden Markov model based non-fragile sampled-data control design for mode-dependent fuzzy systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    2. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2022. "Improved sampled-data control design of T-S fuzzy systems against mismatched fuzzy-basis functions," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    3. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Xing, Mingqi & Wang, Yanqian & Zhuang, Guangming & Chen, Fu, 2021. "Event-based asynchronous and resilient filtering for singular Markov jump LPV systems against deception attacks," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    6. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Chen, Zongjie & Zhang, Yigang & Kong, Qingkai & Fang, Ting & Wang, Jing, 2022. "Observer-based H∞ control for persistent dwell-time switched networked nonlinear systems under packet dropout," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    8. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    9. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    10. Anh Tuan Vo & Thanh Nguyen Truong & Hee-Jun Kang, 2023. "Fixed-Time RBFNN-Based Prescribed Performance Control for Robot Manipulators: Achieving Global Convergence and Control Performance Improvement," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
    11. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    12. Wang, Haitao & Chen, Xiangyong & Wang, Jing, 2022. "H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    13. Guo, Xiyue & Liang, Hongjing & Pan, Yingnan, 2020. "Observer-Based Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Multi-Agent Systems with Dead-Zone Input," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    14. Pan, X.Z. & Huang, J.J. & Lee, S.M., 2023. "A novel convex relaxation technique on affine transformed sampled-data control issue for fuzzy semi-Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    15. Yu, Peilin & Deng, Feiqi, 2022. "Stabilization analysis of Markovian asynchronous switched systems with input delay and Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    16. Xu, Tianshu & Xia, Jianwei & Wang, Sanxia & Lian, Yuxiao & Zhang, Huasheng, 2020. "Extended dissipativity-based non-fragile sampled-data control of fuzzy Markovian jump systems with incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    17. Selvaraj, P. & Kwon, O.M. & Lee, S.H. & Sakthivel, R., 2022. "Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    18. Sakthivel, Ramalingam & Sakthivel, Rathinasamy & Kwon, Oh-Min & Selvaraj, Palanisamy, 2021. "Disturbance rejection for singular semi-Markov jump neural networks with input saturation," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    19. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    20. Wu, Jiacheng & Su, Lei & Li, Shaoming & Wang, Jing & Chen, Xiangyong, 2021. "Extended dissipative filtering for singularly perturbed systems with random uncertain measurement: A double-layer switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s009630032200529x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.