IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics0096300324006131.html
   My bibliography  Save this article

A weighted switching sequence optimization algorithm for static output feedback control synthesis of nonlinear systems

Author

Listed:
  • Gao, Jingjing
  • Xie, Xiangpeng

Abstract

In this paper, the static output feedback (SOF) control synthesis of discrete-time Takagi-Sugeno (T-S) fuzzy systems is concerned upon homogeneous polynomial parameter dependent Lyapunov functions (HPPD-LFs). It is well known that SOF control always leads to inequality conditions with non-convexity, which makes the optimization problem intractable. To overcome this difficulty, a novel switching sequence convex optimization (SSCO) algorithm is proposed, which is upon the matrix decomposition concept and the inner approximation strategy to eliminate the non-convex terms formed by the controller and the slack variables. Unlike conventional methods, the controller acts as a direct optimization variable and does not require structural or multiplicative relationships between the slack variables, which opens up the possibility of obtaining improved results in terms of l2 gain performance. In particular, more relaxed design conditions are obtained for SOF controller based on the weighted switching method by effectively utilizing the membership functions information. Finally, two simulation examples demonstrate the superiority of the developed SOF control scheme.

Suggested Citation

  • Gao, Jingjing & Xie, Xiangpeng, 2025. "A weighted switching sequence optimization algorithm for static output feedback control synthesis of nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006131
    DOI: 10.1016/j.amc.2024.129152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2017. "Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 586-599.
    2. Ning, Jinghua & Hua, Changchun, 2022. "H∞ output feedback control for fractional-order T-S fuzzy model with time-delay," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    3. Cherifi, Abdelmadjid & Guelton, Kevin & Arcese, Laurent & Leite, Valter J.S., 2019. "Global non-quadratic D-stabilization of Takagi–Sugeno systems with piecewise continuous membership functions," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 23-36.
    4. Ge, Chao & Liu, Zengshuai & Wang, Lei & Liu, Yajuan, 2022. "Improved stability criteria of T-S fuzzy systems with sampled-data-based dissipative control," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    5. Chang, Xiao-Heng & Jin, Xue, 2022. "Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Hu, Yue & Cai, Chenxiao & Lee, SeungHoon & Lee, YongGwon & Kwon, Oh-Min, 2023. "New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Lee, Won Il & Park, Bum Yong & Kim, Sung Hyun, 2022. "Relaxed observer-based stabilization and dissipativity conditions of T-S fuzzy systems with nonhomogeneous Markov jumps via non-PDC scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    3. Li, Min & Shu, Feng & Liu, Duyu & Zhong, Shouming, 2018. "Robust H∞ control of T-S fuzzy systems with input time-varying delays: A delay partitioning method," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 209-222.
    4. Zhu, Hao-Yang & Jiang, Xiaoyue & Li, Yuan-Xin & Tong, Shaocheng, 2023. "Finite-time adaptive fuzzy output tracking of switched nonlinear systems with ISD-ADT," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    5. Panneerselvam, V. & Aravinth, N. & Sakthivel, R. & Hafez, M.G., 2024. "Mode-dependent observer-based secured hybrid-driven reliable control for semi-Markov jump cyber–physical systems with DoS attacks," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Zhai, Junchang & Wang, Huanqing & Qin, Yuping & Cui, Hongxia, 2025. "Estimation-based event-triggered fixed-time fuzzy tracking control for high-order nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    7. Sorin Lugojan & Loredana Ciurdariu & Eugenia Grecu, 2022. "Chenciner Bifurcation Presenting a Further Degree of Degeneration," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    8. Sakthivel, R. & Abinandhitha, R. & Satheesh, T. & Kwon, O.M., 2024. "Hybrid control design for nonlinear chaotic semi-Markov jump systems via fault alarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    10. Zhao, Jipeng & Yang, Guang-Hong, 2023. "Fuzzy adaptive secure tracking control against unknown false data injection attacks for uncertain nonlinear systems with input quantization," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    11. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Ran, Suzhen & Xue, Yanmei & Zheng, Bo-Chao & Wang, Zhenyou, 2017. "Quantized feedback fuzzy sliding mode control design via memory-based strategy," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 283-295.
    13. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    14. Zhang, Ning & Qi, Wenhai & Pang, Guocheng & Cheng, Jun & Shi, Kaibo, 2022. "Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    15. Zhu, Lin & Che, Wei-Wei & Jin, Xiao-Zheng, 2022. "Dynamic event-triggered tracking control for model-free networked control systems," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    16. Chen, Xiang & Li, Shi & Wang, Ronghao & Xiang, Zhengrong, 2023. "Event-Triggered output feedback adaptive control for nonlinear switched interconnected systems with unknown control coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    17. Zhimin Li & Chengming Lu & Hongyu Wang, 2023. "Non-Fragile Fuzzy Tracking Control for Nonlinear Networked Systems with Dynamic Quantization and Randomly Occurring Gain Variations," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    18. Mathiyalagan, K. & Nidhi, A. Shree & Su, H. & Renugadevi, T., 2022. "Observer and boundary output feedback control for coupled ODE-transport PDE," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    19. Lu, Ji-Jing & Xiong, Jun, 2024. "Energy-to-peak quantized filtering for T-S fuzzy systems with event-triggered-based weighted try-once-discard protocol: The finite-time case," Applied Mathematics and Computation, Elsevier, vol. 483(C).
    20. Jiao, Ticao & Qi, Xiaomei & Jiang, Jishun & Yu, Mingzheng, 2022. "Noise-input-to-state stability analysis of switching stochastic nonlinear systems with mode-dependent multiple impulses," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.