IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v396y2021ics0096300320308377.html
   My bibliography  Save this article

Modelling the dynamic emotional information propagation and guiding the public sentiment in the Chinese Sina-microblog

Author

Listed:
  • Yin, Fulian
  • Xia, Xinyu
  • Zhang, Xiaojian
  • Zhang, Mingjia
  • Lv, Jiahui
  • Wu, Jianhong

Abstract

Social networks are flooded with different pieces of emotional information, the propagation of which helps to shape the development of public sentiment. To help designing effective communication strategies during the entire development of an event, we propose an emotion-based susceptible-forwarding-immune (E-SFI) propagation dynamic model, that takes into account of the categories of emotions into positive, neutral and negative and the emotional choices of user communities, to investigate the information propagation process that leads to public sentiment. Our model is based on the forwarding quantity and takes into account the differential influence of a delivered emotional information on the emotion change of users depending on their respective emotion status. Our Model-based analytic and numerical analyses show that three types of forwarding probabilities involved in our E-SFI model are in accordance with the actual accident situation, and our sensitivity analyses describe important factors that affect the emotional choices of user communities in support for decision strategies to guide the public sentiment. To quantify the significance of these factors, we introduce multiple summative indices including the information with emotions propagation reproduction number, and emotion entropy.

Suggested Citation

  • Yin, Fulian & Xia, Xinyu & Zhang, Xiaojian & Zhang, Mingjia & Lv, Jiahui & Wu, Jianhong, 2021. "Modelling the dynamic emotional information propagation and guiding the public sentiment in the Chinese Sina-microblog," Applied Mathematics and Computation, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308377
    DOI: 10.1016/j.amc.2020.125884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Yi Zhang & Jiuping Xu & Yue Wu, 2018. "A fuzzy rumor spreading model based on transmission capacity," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(02), pages 1-21, February.
    3. Sang, Chun-Yan & Liao, Shi-Gen, 2020. "Modeling and simulation of information dissemination model considering user’s awareness behavior in mobile social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Sahafizadeh, Ebrahim & Tork Ladani, Behrouz, 2018. "The impact of group propagation on rumor spreading in mobile social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 412-423.
    6. Zhao, Danling & Sun, Jianbin & Tan, Yuejin & Wu, Jianhong & Dou, Yajie, 2018. "An extended SEIR model considering homepage effect for the information propagation of online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1019-1031.
    7. Huo, Liang'an & Wang, Li & Song, Naixiang & Ma, Chenyang & He, Bing, 2017. "Rumor spreading model considering the activity of spreaders in the homogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 855-865.
    8. Ume L Abbas & Roy M Anderson & John W Mellors, 2007. "Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Liang’an & Gu, Jiafeng, 2023. "The influence of individual emotions on the coupled model of unconfirmed information propagation and epidemic spreading in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Shen, Han & Tu, Lilan & Guo, Yifei & Chen, Juan, 2022. "The influence of cross-platform and spread sources on emotional information spreading in the 2E-SIR two-layer network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Zhang, Mingli & Qin, Simeng & Zhu, Xiaoxia, 2021. "Information diffusion under public crisis in BA scale-free network based on SEIR model — Taking COVID-19 as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Jiang, Guoyin & Li, Saipeng & Li, Minglei, 2020. "Dynamic rumor spreading of public opinion reversal on Weibo based on a two-stage SPNR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    4. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    5. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    6. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    7. Yanlan Mei & Yan Tu & Kefan Xie & Yicheng Ye & Wenjing Shen, 2019. "Internet Public Opinion Risk Grading under Emergency Event Based on AHPSort II-DEMATEL," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    8. Carel Pretorius & John Stover & Lori Bollinger & Nicolas Bacaër & Brian Williams, 2010. "Evaluating the Cost-Effectiveness of Pre-Exposure Prophylaxis (PrEP) and Its Impact on HIV-1 Transmission in South Africa," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-10, November.
    9. Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
    10. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Xinhai Lu & Yanwei Zhang & Handong Tang, 2021. "Modeling and Simulation of Dissemination of Cultivated Land Protection Policies in China," Land, MDPI, vol. 10(2), pages 1-21, February.
    12. Zhang, Yuhuai & Zhu, Jianjun, 2018. "Stability analysis of I2S2R rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 862-881.
    13. Ke, Yue & Zhu, Linhe & Wu, Peng & Shi, Lei, 2022. "Dynamics of a reaction-diffusion rumor propagation model with non-smooth control," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    14. Junjun Jiang & Xiaoyi Yang & Li Ye & Bo Zhou & Chuanyi Ning & Jiegang Huang & Bingyu Liang & Xiaoni Zhong & Ailong Huang & Renchuan Tao & Cunwei Cao & Hui Chen & Hao Liang, 2014. "Pre-Exposure Prophylaxis for the Prevention of HIV Infection in High Risk Populations: A Meta-Analysis of Randomized Controlled Trials," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    15. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    16. Sang, Chun-Yan & Liao, Shi-Gen, 2020. "Modeling and simulation of information dissemination model considering user’s awareness behavior in mobile social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    17. Chen, Jian & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2020. "Cost-effective anti-rumor message-pushing schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Lan, Yuexin & Lian, Zhixuan & Zeng, Runxi & Zhu, Di & Xia, Yixue & Liu, Mo & Zhang, Peng, 2020. "A statistical model of the impact of online rumors on the information quantity of online public opinion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    19. Sahafizadeh, Ebrahim & Tork Ladani, Behrouz, 2023. "Soft rumor control in mobile instant messengers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Juyoung Song & Dal-Lae Jin & Tae Min Song & Sang Ho Lee, 2023. "Exploring Future Signals of COVID-19 and Response to Information Diffusion Using Social Media Big Data," IJERPH, MDPI, vol. 20(9), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.