IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v382y2020ics0096300320303155.html

Model-free computation of risk contributions in credit portfolios

Author

Listed:
  • Leitao, Álvaro
  • Ortiz-Gracia, Luis

Abstract

In this work, we propose a non-parametric density estimation technique for measuring the risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The novel method is based on wavelets, and we derive closed-form expressions to calculate the Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and t-copula models for driving the defaults. The results obtained along the numerical experiments show the impressive accuracy and speed of this method when compared with crude Monte Carlo simulation. The presented methodology applies in the same manner regardless of the used model, and the computational performance is invariant under a considerable change in the dimension of the selected model. The speed-up with respect to the classical Monte Carlo approach ranges from twenty-five to one-thousand depending on the used model.

Suggested Citation

  • Leitao, Álvaro & Ortiz-Gracia, Luis, 2020. "Model-free computation of risk contributions in credit portfolios," Applied Mathematics and Computation, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320303155
    DOI: 10.1016/j.amc.2020.125351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marek Rutkowski & Silvio Tarca, 2015. "Regulatory Capital Modeling For Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-44.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    4. Dirk Tasche, 2009. "Capital allocation for credit portfolios with kernel estimators," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 581-595.
    5. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    6. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    7. Josep J. Masdemont & Luis Ortiz-Gracia, 2014. "Haar wavelets-based approach for quantifying credit portfolio losses," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1587-1595, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    2. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    2. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    3. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    4. So Yeon Chun & Miguel A. Lejeune, 2020. "Risk-Based Loan Pricing: Portfolio Optimization Approach with Marginal Risk Contribution," Management Science, INFORMS, vol. 66(8), pages 3735-3753, August.
    5. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    6. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    7. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    8. Francesca Centrone & Emanuela Rosazza Gianin, 2025. "Capital Allocation Rules and Generalized Collapse to the Mean: Theory and Practice," Mathematics, MDPI, vol. 13(6), pages 1-14, March.
    9. M. Dietsch & C. Welter-Nicol, 2014. "Do LTV and DSTI caps make banks more resilient?," Débats Economiques et financiers 13, Banque de France.
    10. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Annals of Operations Research, Springer, vol. 332(1), pages 55-84, January.
    11. Jie Shen & Yi Shen & Bin Wang & Ruodu Wang, 2019. "Distributional compatibility for change of measures," Finance and Stochastics, Springer, vol. 23(3), pages 761-794, July.
    12. Koike, Takaaki & Chen, Cathy W.S. & Lin, Edward M.H., 2025. "Forecasting and backtesting gradient allocations of expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 124(C).
    13. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    14. Christoph Frei, 2020. "A New Approach to Risk Attribution and Its Application in Credit Risk Analysis," Risks, MDPI, vol. 8(2), pages 1-13, June.
    15. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera & Thorsten Schmidt, 2019. "Fair Estimation of Capital Risk Allocation," Papers 1902.10044, arXiv.org, revised Nov 2019.
    16. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    17. Dietsch, Michel & Petey, Joël, 2015. "The credit-risk implications of home ownership promotion: The effects of public subsidies and adjustable-rate loans," Journal of Housing Economics, Elsevier, vol. 28(C), pages 103-120.
    18. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    19. Dorinel Bastide & St'ephane Cr'epey & Samuel Drapeau & Mekonnen Tadese, 2023. "Resolving a Clearing Member's Default, A Radner Equilibrium Approach," Papers 2310.02608, arXiv.org, revised Oct 2024.
    20. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320303155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.