IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v381y2020ics0096300320302745.html
   My bibliography  Save this article

A practical approach to networked control design for robust H∞ performance in the presence of uncertainties in both communication and system

Author

Listed:
  • Haghighi, Payam
  • Tavassoli, Babak
  • Farhadi, Alireza

Abstract

This work presents results on the development of robust H∞ control strategy for Networked Control Systems (NCSs) by involving uncertainties in both communication and controlled plant subsystems. The network-induced delays in both communication links (to and from the controller) are assumed to behave as Markov chains. An analytical approach is presented to calculate the transition probabilities of the Markovian network-induced delays. By employing the augmentation method, the resultant system is converted into a delay-free uncertain singular Markovian jump system with bounded transition probabilities. New conditions are established to assure that the uncertain NCS satisfies an H∞ performance requirement. Moreover, sufficient conditions for robust H∞ output feedback controller design are expressed in terms of LMIs. Finally, numerical examples are presented to verify the validity of the proposed controller design method.

Suggested Citation

  • Haghighi, Payam & Tavassoli, Babak & Farhadi, Alireza, 2020. "A practical approach to networked control design for robust H∞ performance in the presence of uncertainties in both communication and system," Applied Mathematics and Computation, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302745
    DOI: 10.1016/j.amc.2020.125308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Guoliang & Xia, Jianwei & Zhuang, Guangming & Zhao, Junsheng, 2018. "Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 1-17.
    2. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based output tracking control for fuzzy networked control systems with network-induced delays," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 513-530.
    3. Qi, Wenhai & Yang, Xu & Gao, Xianwen & Cheng, Jun & Kao, Yonggui & Wei, Yunliang, 2020. "Stability for delayed switched systems with Markov jump parameters and generally incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    4. Oecd, 2018. "IoT measurement and applications," OECD Digital Economy Papers 271, OECD Publishing.
    5. Zhiguang Feng & James Lam, 2016. "Dissipative control and filtering of discrete-time singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(11), pages 2532-2542, August.
    6. Yanqian Wang & Guangming Zhuang & Fu Chen, 2020. "A dynamic event-triggered H∞ control for singular Markov jump systems with redundant channels," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(1), pages 158-179, January.
    7. Ma, Yuechao & Jia, Xiaorui & Liu, Deyou, 2016. "Robust finite-time H∞ control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 213-227.
    8. Kwon, Nam Kyu & Park, In Seok & Park, PooGyeon, 2017. "H∞ control for singular Markovian jump systems with incomplete knowledge of transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 126-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ning & Qi, Wenhai & Pang, Guocheng & Cheng, Jun & Shi, Kaibo, 2022. "Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    2. Hamdi, Issam El & Vargas, Alessandro N. & Bouzahir, Hassane & Oliveira, Ricardo C.L.F. & Acho, Leonardo, 2021. "Robust stability of stochastic systems with varying delays: Application to RLC circuit with intermittent closed-loop," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    3. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    4. Cui, Beibei & Song, Xinmin & Liu, Xiyu, 2019. "Unbiased steady minimum-variance estimation for systems with measurement-delay and unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 379-391.
    5. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    6. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    7. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    8. Gao, Meng & Zhang, Lihua & Qi, Wenhai & Cao, Jinde & Cheng, Jun & Kao, Yonggui & Wei, Yunliang & Yan, Xiaoyu, 2020. "SMC for semi-Markov jump T-S fuzzy systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    9. Zhou, Yaoyao & Chen, Gang, 2021. "Non-fragile H∞ finite-time sliding mode control for stochastic Markovian jump systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    10. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    11. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    12. Wenhai Qi & Yonggui Kao & Xianwen Gao, 2017. "Further results on finite-time stabilisation for stochastic Markovian jump systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(14), pages 2967-2975, October.
    13. Yan, Zhiguo & Song, Yunxia & Liu, Xiaoping, 2018. "Finite-time stability and stabilization for Itô-type stochastic Markovian jump systems with generally uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 512-525.
    14. Gao, Rong & Xu, Juanjuan & Li, Wuquan & Liu, Xiaohua, 2019. "A necessary and sufficient RHC stabilizability condition for stochastic control with delayed input," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 122-130.
    15. Ling Hou & Dongyan Chen & Chan He, 2019. "Finite-Time Nonfragile Dissipative Control for Discrete-Time Neural Networks with Markovian Jumps and Mixed Time-Delays," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    16. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    17. Hyun Kim, Sung, 2019. "Generalized relaxation techniques for robust H∞ filtering of nonhomogeneous Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 542-556.
    18. Mourad Kchaou & Mohamed Amin Regaieg, 2023. "Event-Triggered Extended Dissipativity Fuzzy Filter Design for Nonlinear Markovian Switching Systems against Deception Attacks," Mathematics, MDPI, vol. 11(9), pages 1-27, April.
    19. Zhang, Jianan & Ma, Yuechao, 2023. "Adaptive fault-tolerant double asynchronous control for switched semi-Markov jump systems via improved memory sampled-data technique," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Wang, Yanqian & Chen, Fu & Zhuang, Guangming & Yang, Guang, 2020. "Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.