IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v356y2019icp379-391.html
   My bibliography  Save this article

Unbiased steady minimum-variance estimation for systems with measurement-delay and unknown inputs

Author

Listed:
  • Cui, Beibei
  • Song, Xinmin
  • Liu, Xiyu

Abstract

This paper considers the problem of simultaneously estimating the state and the unknown input for linear discrete-time systems with measurement delay. Firstly, the reorganized innovation analysis approach is applied to deal with measurement delay and the measurement delay model is converted into a measurement delay free model. A recursive filter where the estimation of the state and the input are interconnected is proposed. Then we utilize the innovation to obtain the unknown input estimator by least-squares estimation and the optimal state estimator is constructed by transforming into a standard Kalman filtering in terms of two Riccati equations with the same dimension as the state model. Further, the infinite horizon asymptotic stability of proposed filter is discussed. Finally we give a numerical example to show that our estimation approach is effective.

Suggested Citation

  • Cui, Beibei & Song, Xinmin & Liu, Xiyu, 2019. "Unbiased steady minimum-variance estimation for systems with measurement-delay and unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 379-391.
  • Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:379-391
    DOI: 10.1016/j.amc.2019.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319302437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Guoliang & Xia, Jianwei & Zhuang, Guangming & Zhao, Junsheng, 2018. "Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 1-17.
    2. Song, Xinmin & Duan, Zhenhua & Park, Ju H., 2016. "Linear optimal estimation for discrete-time systems with measurement-delay and packet dropping," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 115-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    2. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    3. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    4. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    5. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    6. Wu, Xifen & Bao, Haibo, 2023. "H∞ state estimation for multiplex networks with randomly occurring sensor saturations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    7. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    8. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    9. Haghighi, Payam & Tavassoli, Babak & Farhadi, Alireza, 2020. "A practical approach to networked control design for robust H∞ performance in the presence of uncertainties in both communication and system," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    10. Shi, Chong-Xiao & Yang, Guang-Hong, 2018. "Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 73-88.
    11. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    12. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    13. Gao, Rong & Xu, Juanjuan & Li, Wuquan & Liu, Xiaohua, 2019. "A necessary and sufficient RHC stabilizability condition for stochastic control with delayed input," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 122-130.
    14. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    15. Li, Yueyang & Liu, Shuai & Zhong, Maiying & Ding, Steven X., 2018. "State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 116-130.
    16. Shi, Xuanxuan & Shen, Mouquan, 2019. "A new approach to feedback feed-forward iterative learning control with random packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 399-412.
    17. Zhang, Jing & Xia, Jianwei & Sun, Wei & Zhuang, Guangming & Wang, Zhen, 2018. "Finite-time tracking control for stochastic nonlinear systems with full state constraints," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 207-220.
    18. Du, Dongsheng, 2017. "Fault detection for discrete-time linear systems based on descriptor observer approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 575-585.
    19. Yang, Te & Chen, Guoliang & Xia, Jianwei & Wang, Zhen & Sun, Qun, 2019. "Robust H∞ filtering for polytopic uncertain stochastic systems under quantized sampled outputs," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 688-701.
    20. Fu, Xiaoyu & Song, Xinmin & Liu, Xiyu & Zhang, Min, 2023. "Distributed state estimation with state equality constraints in the presence of packet dropping," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:379-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.