IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v343y2019icp299-313.html
   My bibliography  Save this article

Second-order controllability of two-time-scale multi-agent systems

Author

Listed:
  • Long, Mingkang
  • Su, Housheng
  • Liu, Bo

Abstract

This paper addresses the controllability for an interconnected two-time-scale second-order multi-agent system. Firstly, to eliminate the singular perturbation parameter, we separate the multi-agent system into slow subsystem and fast subsystem by using singular perturbation methods. Then, based on matrix theory, some necessary and/or sufficient criteria are derived for second-order controllability of two-time-scale multi-agent systems with multiple leaders. Moreover, we propose some easy-to-use second-order controllability criteria determined only by eigenvalues of system matrices. Lastly, the effectiveness of the proposed theoretical results is illustrated by a simulation example.

Suggested Citation

  • Long, Mingkang & Su, Housheng & Liu, Bo, 2019. "Second-order controllability of two-time-scale multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 299-313.
  • Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:299-313
    DOI: 10.1016/j.amc.2018.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhiyong & Jiang, Haijun & Mei, Xuehui & Hu, Cheng, 2018. "Guaranteed cost consensus for second-order multi-agent systems with heterogeneous inertias," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 739-757.
    2. Liu, Bin & Hill, David J. & Sun, Zhijie, 2018. "Input-to-state-KL-stability and criteria for a class of hybrid dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 124-140.
    3. He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zhibin & Wang, Fuyong & Yin, Yanhui & Liu, Zhongxin & Chen, Zengqiang, 2022. "Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Wang, Xin & Su, Housheng, 2019. "Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 490-501.
    3. Mengqi Gu & Guo-Ping Jiang, 2023. "Observability of Discrete-Time Two-Time-Scale Multi-Agent Systems with Heterogeneous Features under Leader-Based Architecture," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    4. Liu, Bo & Su, Housheng & Wu, Licheng & Shen, Xixi, 2021. "Controllability for multi-agent systems with matrix-weight-based signed network," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Xingcheng Pu & Chaowen Xiong & Lianghao Ji & Longlong Zhao, 2019. "Weighted Couple-Group Consensus Analysis of Heterogeneous Multiagent Systems with Cooperative-Competitive Interactions and Time Delays," Complexity, Hindawi, vol. 2019, pages 1-13, March.
    6. Wang, Xiaoling & Su, Housheng, 2020. "Completely model-free RL-based consensus of continuous-time multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    7. Liu, Yifan & Su, Housheng, 2019. "Containment control of second-order multi-agent systems via intermittent sampled position data communication," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Su, Housheng, 2019. "Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 490-501.
    2. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Gao, Shuo & Wen, Guoguang & Zhai, Xiaoqin & Zheng, Peng, 2023. "Finite-/fixed-time bipartite consensus for first-order multi-agent systems via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Peng, Zhinan & Hu, Jiangping & Shi, Kaibo & Luo, Rui & Huang, Rui & Ghosh, Bijoy Kumar & Huang, Jiuke, 2020. "A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Jinlong Yuan & Jun Xie & Honglei Xu & Enmin Feng & Zhilong Xiu, 2019. "Optimization for Nonlinear Uncertain Switched Stochastic Systems with Initial State Difference in Batch Culture Process," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    6. Fan, Ming-Can & Wu, Yue, 2018. "Global leader-following consensus of nonlinear multi-agent systems with unknown control directions and unknown external disturbances," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 274-286.
    7. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    8. Yang, Xueyan & Peng, Dongxue & Lv, Xiaoxiao & Li, Xiaodi, 2019. "Recent progress in impulsive control systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 244-268.
    9. Li, Yuanen & Zhang, Huasheng & Zhang, Tingting & Geng, Han, 2023. "Interval stability/stabilization and H∞ feedback control for linear impulsive stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    10. Cai, Yuliang & Zhang, Huaguang & Liu, Yang & He, Qiang, 2020. "Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    11. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    12. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    13. Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
    14. Li, Jinghan & Zhao, Jun, 2022. "Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    15. Li, Peng & Li, Xiaodi, 2019. "Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 314-323.
    16. Bin Liu & Bo Xu & Guohua Zhang & Lisheng Tong, 2019. "Review of Some Control Theory Results on Uniform Stability of Impulsive Systems," Mathematics, MDPI, vol. 7(12), pages 1-28, December.
    17. Fu, Baozeng & Li, Shihua & Yang, Jun & Guo, Lei, 2018. "Global output regulation for a class of single input Port-controlled Hamiltonian disturbed systems," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 322-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:299-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.