IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp968-982.html
   My bibliography  Save this article

Optimality conditions and optimization methods for quartic polynomial optimization

Author

Listed:
  • Wu, Zhiyou
  • Tian, Jing
  • Quan, Jing
  • Ugon, Julien

Abstract

In this paper multivariate quartic polynomial optimization program (QPOP) is considered. Quartic optimization problems arise in various practical applications and are proved to be NP hard. We discuss necessary global optimality conditions for quartic problem (QPOP). And then we present a new (strongly or ε-strongly) local optimization method according to necessary global optimality conditions, which may escape and improve some KKT points. Finally we design a global optimization method for problem (QPOP) by combining the new (strongly or ε-strongly) local optimization method and an auxiliary function. Numerical examples show that our algorithms are efficient and stable.

Suggested Citation

  • Wu, Zhiyou & Tian, Jing & Quan, Jing & Ugon, Julien, 2014. "Optimality conditions and optimization methods for quartic polynomial optimization," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 968-982.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:968-982
    DOI: 10.1016/j.amc.2014.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314001118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Y. Wu & V. Jeyakumar & A. M. Rubinov, 2007. "Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 123-130, April.
    2. NESTEROV, Yu., 2000. "Squared functional systems and optimization problems," LIDAM Reprints CORE 1472, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Vaithilingam Jeyakumar & Zhiyou Wu, 2007. "Conditions For Global Optimality Of Quadratic Minimization Problems With Lmi Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 149-160.
    4. Yanjun Wang & Zhian Liang, 2010. "Global optimality conditions for cubic minimization problem with box or binary constraints," Journal of Global Optimization, Springer, vol. 47(4), pages 583-595, August.
    5. Z. Y. Wu & J. Quan & G. Q. Li & J. Tian, 2012. "Necessary Optimality Conditions and New Optimization Methods for Cubic Polynomial Optimization Problems with Mixed Variables," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 408-435, May.
    6. M. Ç. Pinar, 2004. "Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 433-440, August.
    7. Jiawang Nie, 2009. "Sum of squares method for sensor network localization," Computational Optimization and Applications, Springer, vol. 43(2), pages 151-179, June.
    8. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z. Wu & J. Tian & J. Ugon, 2015. "Global optimality conditions and optimization methods for polynomial programming problems," Journal of Global Optimization, Springer, vol. 62(4), pages 617-641, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    2. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    3. V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
    4. Thai Doan Chuong, 2020. "Semidefinite Program Duals for Separable Polynomial Programs Involving Box Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 289-299, April.
    5. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On zero duality gap in nonconvex quadratic programming problems," Journal of Global Optimization, Springer, vol. 52(2), pages 229-242, February.
    6. Guoyin Li, 2012. "Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 710-726, March.
    7. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    8. Meng-Meng Zheng & Zheng-Hai Huang & Sheng-Long Hu, 2022. "Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space," Journal of Global Optimization, Springer, vol. 84(2), pages 415-440, October.
    9. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    10. Kato, Naohiro & Kuriki, Satoshi, 2013. "Likelihood ratio tests for positivity in polynomial regressions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 334-346.
    11. Sturm, J.F. & Zhang, S., 2001. "On Cones of Nonnegative Quadratic Functions," Discussion Paper 2001-26, Tilburg University, Center for Economic Research.
    12. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    13. Liyun Dai & Bican Xia, 2015. "Smaller SDP for SOS decomposition," Journal of Global Optimization, Springer, vol. 63(2), pages 343-361, October.
    14. Z. Wu & J. Tian & J. Ugon, 2015. "Global optimality conditions and optimization methods for polynomial programming problems," Journal of Global Optimization, Springer, vol. 62(4), pages 617-641, August.
    15. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.
    16. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    17. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    18. Siem, A.Y.D. & de Klerk, E. & den Hertog, D., 2005. "Discrete Least-norm Approximation by Nonnegative (Trigonomtric) Polynomials and Rational Functions," Discussion Paper 2005-73, Tilburg University, Center for Economic Research.
    19. Siem, A.Y.D. & de Klerk, E. & den Hertog, D., 2005. "Discrete Least-norm Approximation by Nonnegative (Trigonomtric) Polynomials and Rational Functions," Other publications TiSEM 43a1152a-8130-4e42-851b-e, Tilburg University, School of Economics and Management.
    20. Wei Chen & Liansheng Zhang, 2010. "Global optimality conditions for quadratic 0-1 optimization problems," Journal of Global Optimization, Springer, vol. 46(2), pages 191-206, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:968-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.