IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp150-163.html
   My bibliography  Save this article

Robust identification of enzymatic nonlinear dynamical systems for 1,3-propanediol transport mechanisms in microbial batch culture

Author

Listed:
  • Yuan, Jinlong
  • Zhu, Xi
  • Zhang, Xu
  • Yin, Hongchao
  • Feng, Enmin
  • Xiu, Zhilong

Abstract

In this paper, in view of glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae), we study an enzyme-catalytic nonlinear dynamic system with uncertain parameters for formulating the process of batch culture. Some important properties are also discussed. Taking account of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium point of the nonlinear system in batch culture, a novel approach is used here to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. The purpose of this paper is to identify these uncertain parameters. To this end, taking the defined biological robustness as a performance index, we establish an identification model, which is subject to the nonlinear system. Simultaneously, the existence of optimal solution to the identification model is deduced. We develop an optimization algorithm, based on novel combinations of Nelder–Mead algorithm and the change rate of state variable, for solving the identification model under various experiment conditions. The convergence analysis of this algorithm is also investigated. Numerical results not only show that the established model can be used to describe the process of batch culture reasonably, but also imply that the optimization algorithm is valid.

Suggested Citation

  • Yuan, Jinlong & Zhu, Xi & Zhang, Xu & Yin, Hongchao & Feng, Enmin & Xiu, Zhilong, 2014. "Robust identification of enzymatic nonlinear dynamical systems for 1,3-propanediol transport mechanisms in microbial batch culture," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 150-163.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:150-163
    DOI: 10.1016/j.amc.2014.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314000642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Wang & Zhilong Xiu & Yuduo Zhang & Enmin Feng, 2011. "Optimal Control for Multistage Nonlinear Dynamic System of Microbial Bioconversion in Batch Culture," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-11, July.
    2. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    3. Lei Wang, 2012. "Modelling and Regularity of Nonlinear Impulsive Switching Dynamical System in Fed-Batch Culture," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    2. Jinlong Yuan & Jun Xie & Honglei Xu & Enmin Feng & Zhilong Xiu, 2019. "Optimization for Nonlinear Uncertain Switched Stochastic Systems with Initial State Difference in Batch Culture Process," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    3. Guanming Cheng & Lei Wang & Ryan Loxton & Qun Lin, 2015. "Robust Optimal Control of a Microbial Batch Culture Process," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 342-362, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    2. Silke Neumann & Linda Løvdok & Kajetan Bentele & Johannes Meisig & Ekkehard Ullner & Ferencz S Paldy & Victor Sourjik & Markus Kollmann, 2014. "Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    3. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    4. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    5. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    6. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    7. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    8. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    9. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    10. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    11. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Masatoshi Nishikawa & Tatsuo Shibata, 2010. "Nonadaptive Fluctuation in an Adaptive Sensory System: Bacterial Chemoreceptor," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-12, June.
    13. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    14. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    15. Alejandro F Villaverde & Julio R Banga, 2017. "Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    16. Alessandro Romanel & Lars Juhl Jensen & Luca Cardelli & Attila Csikász-Nagy, 2012. "Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    17. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    18. Michelle D Leach & Katarzyna M Tyc & Alistair J P Brown & Edda Klipp, 2012. "Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    19. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:150-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.