IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57043-x.html
   My bibliography  Save this article

Temporal Contrastive Learning through implicit non-equilibrium memory

Author

Listed:
  • Martin J. Falk

    (University of Chicago)

  • Adam T. Strupp

    (University of Chicago)

  • Benjamin Scellier

    (Rain AI)

  • Arvind Murugan

    (University of Chicago)

Abstract

The backpropagation method has enabled transformative uses of neural networks. Alternatively, for energy-based models, local learning methods involving only nearby neurons offer benefits in terms of decentralized training, and allow for the possibility of learning in computationally-constrained substrates. One class of local learning methods contrasts the desired, clamped behavior with spontaneous, free behavior. However, directly contrasting free and clamped behaviors requires explicit memory. Here, we introduce ‘Temporal Contrastive Learning’, an approach that uses integral feedback in each learning degree of freedom to provide a simple form of implicit non-equilibrium memory. During training, free and clamped behaviors are shown in a sawtooth-like protocol over time. When combined with integral feedback dynamics, these alternating temporal protocols generate an implicit memory necessary for comparing free and clamped behaviors, broadening the range of physical and biological systems capable of contrastive learning. Finally, we show that non-equilibrium dissipation improves learning quality and determine a Landauer-like energy cost of contrastive learning through physical dynamics.

Suggested Citation

  • Martin J. Falk & Adam T. Strupp & Benjamin Scellier & Arvind Murugan, 2025. "Temporal Contrastive Learning through implicit non-equilibrium memory," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57043-x
    DOI: 10.1038/s41467-025-57043-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57043-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57043-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine Glen Evans & Jackson O’Brien & Erik Winfree & Arvind Murugan, 2024. "Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly," Nature, Nature, vol. 625(7995), pages 500-507, January.
    2. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    3. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Arvind Murugan & Suriyanarayanan Vaikuntanathan, 2017. "Topologically protected modes in non-equilibrium stochastic systems," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    5. Stephanie K. Aoki & Gabriele Lillacci & Ankit Gupta & Armin Baumschlager & David Schweingruber & Mustafa Khammash, 2019. "A universal biomolecular integral feedback controller for robust perfect adaptation," Nature, Nature, vol. 570(7762), pages 533-537, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robyn P. Araujo & Lance A. Liotta, 2023. "Universal structures for adaptation in biochemical reaction networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. repec:plo:pone00:0087815 is not listed on IDEAS
    3. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    4. Benoît Mahault & Evelyn Tang & Ramin Golestanian, 2022. "A topological fluctuation theorem," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Ali AlAali & Farrukh Mukhamedov, 2025. "Mixed quantum Ising–XY model on a Cayley tree of order two," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(4), pages 1-8, April.
    7. repec:plo:pcbi00:0030142 is not listed on IDEAS
    8. repec:plo:pcbi00:0030092 is not listed on IDEAS
    9. repec:plo:pcbi00:1005878 is not listed on IDEAS
    10. repec:plo:pone00:0029716 is not listed on IDEAS
    11. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    12. Shuaifeng Li & Xiaoming Mao, 2024. "Training all-mechanical neural networks for task learning through in situ backpropagation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Chongbin Zheng & Evelyn Tang, 2024. "A topological mechanism for robust and efficient global oscillations in biological networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    16. Maurice Filo & Sant Kumar & Mustafa Khammash, 2022. "A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    18. Andras Gyorgy, 2023. "Competition and evolutionary selection among core regulatory motifs in gene expression control," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. repec:plo:pcbi00:1000242 is not listed on IDEAS
    20. repec:plo:pbio00:0030343 is not listed on IDEAS
    21. Niklas Korsbo & Henrik Jönsson, 2020. "It’s about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-29, June.
    22. Zhou Fang & Ankit Gupta & Sant Kumar & Mustafa Khammash, 2024. "Advanced methods for gene network identification and noise decomposition from single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    23. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    24. Stanislav Anastassov & Maurice Filo & Ching-Hsiang Chang & Mustafa Khammash, 2023. "A cybergenetic framework for engineering intein-mediated integral feedback control systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    25. Jonathan R Karr & Alex H Williams & Jeremy D Zucker & Andreas Raue & Bernhard Steiert & Jens Timmer & Clemens Kreutz & DREAM8 Parameter Estimation Challenge Consortium & Simon Wilkinson & Brandon A Al, 2015. "Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-21, May.
    26. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    27. repec:plo:pone00:0008001 is not listed on IDEAS
    28. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57043-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.