IDEAS home Printed from
   My bibliography  Save this article

Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes (Solanum tuberosum)


  • Forslund, A.
  • Ensink, J.H.J.
  • Battilani, A.
  • Kljujev, I.
  • Gola, S.
  • Raicevic, V.
  • Jovanovic, Z.
  • Stikic, R.
  • Sandei, L.
  • Fletcher, T.
  • Dalsgaard, A.


Clean water has become one of the main limiting factors in agricultural food production in Europe, especially for countries around the Mediterranean, who now face more severe and frequent seasonal water shortages. In order to overcome water shortages the European Water Framework Directive encourages and promotes the use of treated urban wastewater in agriculture. However, the use of poor quality water in agriculture poses potential health risks. The application of wastewater through subsurface drip irrigation lines could possibly overcome public health concerns by minimizing contact with wastewater by farmers, farm workers but it is uncertain if the risk for consumers of wastewater irrigated produces would be acceptable. The objective of the current study was therefore to assess whether subsurface irrigation of potatoes with low quality water was associated with higher food safety and reduced human health risks as compared with surface irrigation. The microbial quality of soil and potatoes irrigated by sprinkler, furrow and subsurface drip irrigation, using treated urban wastewater, canal water and tap water were compared at experimental sites near Belgrade, Serbia and in Bologna, Italy. Water, soil and potato samples were collected from March 2007 to September 2008 and their faecal contamination estimated by enumeration of the faecal indicator Escherichia coli. In addition, water and potatoes in Italy were analysed for the presence of helminth eggs, another important indicator of faecal pollution. A quantitative microbial risk assessment (QMRA) model combined with Monte Carlo simulations was used to assess whether the different irrigation practices and associated health risks complied with guidelines set by the World Health Organization (WHO). The study found low levels of E. coli in irrigation water (Italy mean value: 1.7 colony forming units (cfu)/ml and Serbia 11 cfu/ml), as well as in soil (Italy mean: 1.0 cfu/g and Serbia 1.1 cfu/g). Similar low concentrations of E. coli were found on potatoes (Italy mean: 1.0 cfu/g and Serbia 0.0 cfu/g). The vast majority (442/516) of the collected different samples were free of E. coli. No helminth eggs were found in any types of irrigation water or on the surface of potatoes. The risk assessment models found the use of treated wastewater to exceed the levels of risks for gastro-intestinal disease (1.0 x 10-3 disease risk) as recommended by the World Health Organization (WHO) for the accidental ingestion of soil by farmers (Serbia: 0.22 and Italy: 5.7 x 10-2). However, samples that exceeded disease risks set by the WHO were collected before initiation of wastewater irrigation and were limited to a few numbers of samples, which would indicate environmental contamination not linked to irrigation practice. Disease risk from consumption of potatoes in Italy and in Serbia was found to be within acceptable levels. No relationship was found between E. coli concentrations in irrigation water, soil and produce. Similar lack of association was found for E. coli findings in sprinkler, furrow or subsurface drip irrigated soils and produce. This indicates that subsurface drip irrigation can be practiced while ensuring food safety and protecting the health of consumers and farmers.

Suggested Citation

  • Forslund, A. & Ensink, J.H.J. & Battilani, A. & Kljujev, I. & Gola, S. & Raicevic, V. & Jovanovic, Z. & Stikic, R. & Sandei, L. & Fletcher, T. & Dalsgaard, A., 2010. "Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes (Solanum tuberosum)," Agricultural Water Management, Elsevier, vol. 98(3), pages 440-450, December.
  • Handle: RePEc:eee:agiwat:v:98:y:2010:i:3:p:440-450

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christou, Anastasis & Maratheftis, Grivas & Elia, Michael & Hapeshi, Evroula & Michael, Costas & Fatta-Kassinos, Despo, 2016. "Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits," Agricultural Water Management, Elsevier, vol. 173(C), pages 48-54.
    2. Plauborg, Finn & Andersen, Mathias N. & Liu, Fulai & Ensink, Jeroen & Ragab, Ragab, 2010. "Safe and high quality food production using low quality waters and improved irrigation systems and management: SAFIR," Agricultural Water Management, Elsevier, vol. 98(3), pages 377-384, December.
    3. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Martina Artmann & Katharina Sartison, 2018. "The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-32, June.
    5. Styczen, M. & Poulsen, R.N. & Falk, A.K. & Jørgensen, G.H., 2010. "Management model for decision support when applying low quality water in irrigation," Agricultural Water Management, Elsevier, vol. 98(3), pages 472-481, December.
    6. Battilani, Adriano & Steiner, Michele & Andersen, Martin & Back, Soren Nohr & Lorenzen, J. & Schweitzer, Avi & Dalsgaard, Anders & Forslund, Anita & Gola, Secondo & Klopmann, Wolfram & Plauborg, Finn , 2010. "Decentralised water and wastewater treatment technologies to produce functional water for irrigation," Agricultural Water Management, Elsevier, vol. 98(3), pages 385-402, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2010:i:3:p:440-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.